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Abstract

A cooling system for high heat flux applications is examined using microchannel evapo-
rators with water as the working fluid and boiling as the heat transfer mechanism. Exper-
imental studies are performed using single channel microevaporators allowing for better
control of the flow mechanics unlike other investigations where multiple, parallel, flow
channels can result in a non-uniform distribution of the working fluid. High-speed flow
visualizations are performed in conjunction with heat transfer and pressure drop measure-
ments to support the quantitative experimental data. Flow patterns associated with a
range of boundary conditions are characterized and then presented in the form of novel
flow regime maps that intrinsically reflect the physical mechanisms controlling two-phase
pressure distributions and heat transfer behavior. Given the complexity associated with
modeling of boiling heat transfer and the lack of a universal model that provides accu-
rate predictions across a broad spectrum of flow conditions, flow regime maps serve as a
valuable modeling aid to assist in targeted modeling over specific flow regimes. This work
represents a novel and original contribution to the understanding of boiling mechanisms

for water in microchannels.

The flow patterns in this work are found to be closely coupled with mass flux, heat flux,
and channel size; where re-wetting and pressure oscillations play a crucial role, and are
likely responsible for its development and evolution. Reversed flow, typically attributed to
a non-uniform fluid distribution in multiple channel microevaporators by other researchers,
is shown to be a result of the upstream expansion of confined bubbles. During flow boiling,
the pressure drop in the microchannel increases with the heat flux for a constant flow
rate due to the significant acceleration effects associated with smaller channels, unlike in
single-phase flow where the pressure drop is constant. Water flow boiling in rectangular
microchannels, although not extensively explored in the published literature, provides an
extremely high cooling capacity, with dissipation rates approaching 440 TW/cm?, making

this an ideal candidate for cooling of next generation electronic systems.

Single-phase flow studies revealed that pressure and heat transfer coefficient macroscale

models are transferable to microchannels with hydraulic diameters down to 200 um, when

il



the entrance effects and minor losses are properly considered. These studies include laminar
developing flow conditions not commonly considered in the literature and fully developed
flow. Since the applicability of macroscale theories to microchannels is often questioned,
this investigation helps clarify this issue for microchannels within the range of experimental
conditions explored in this work. Finally, new correlations for the hydrodynamic entrance
length are proposed for rectangular microchannels and good agreement is found when
compared with published experimental data over a wide range of Reynolds number. These
correlations are more accurate, and original in the sense that they incorporate the effects of
channel aspect ratio, and include creeping flow conditions which are currently unavailable

for rectangular microchannels.

This work represents a major advance in the development of new cooling systems for

high heat flux applications requiring dissipation rates in excess of 100 W/cm?.

v



Acknowledgements

It is a pleasure to express my sincere gratitude to my supervisor Dr. Richard Culham
for his guidance and support throughout the course of my research. The financial supports
from Natural Sciences and Engineering Research Council of Canada (NSERC), Ontario
Graduate Scholarship (OGS), and University of Waterloo are gratefully acknowledged.
Also, sincere gratitude to the Microelectronics Heat Transfer Laboratory (MHTL) for pro-
viding research facilities during this project. I would like to thank the many members of
the Mechanical and Mechatronics Engineering Department and staff whose assistance and
encouragement helped through this journey. Finally, to my friend Bong Joo Lee, thank

you very much for helping me with the proof-reading.



Dedication

This thesis is dedicated to my parents Jaime Galvis and Rosa Amalia Luna. A special

feeling of gratitude to my wife who has supported me throughout this journey.

vi



Table of Contents

[List of Tables|

[List of Figures|

(Nomenclature

(I _Introduction|

[2.1  Fundamentals of boilingl . . . . . . ... ... ... 0000

[2.1.1 Macro flow boilingl . . . .. ... ... ... ... ...

[2.1.2  Micro flow boiling. . . . . .. ... ..o

[2.2  Single-phase liquid flow in microchannels| . . . . . . .. ... ... ... ..

vii

XV

xxi

xXxXV1

10

12



3

Experimental Facility|

[3.1 Experimental setup and procedures| .

[3.1.1 Testrigl . ... ... .....

[3.2.1 Single-phase flow] . . . . . ..

[3.2.2  Two-phase flow| . . . . . . ..

[3.3  Uncertainty analysis| . . . .. .. ..

Single-Phase Flow and Heat Transfer|

[4.1  Single-phase friction factorf . . . . . .

[4.2  Single-phase heat transter] . . . . . .

Two-phase Flow Visualization|

[>.1 Experimental Results . . . . . .. ..

[b.2 Flow patterns| . . . . ... ... ...

36

36

36

43

46

46

20

25

58

59

67

71



[5.3  Bubble size and bubbly frequency| . . . . . .. ... .00

[>.4  Flow reversal and intermittent flow patterns| . . . . . . . . ... ... ...

[5.5 Pressure drop and channel wall temperature| . . . . . . . . ... ... ...

5.6  Flow regime maps|. . . . . . . . . ... ...

[>.7  Macro and micro flow regime maps comparison| . . . . . . ... ... ...

[5.7.1  Macroscale low regime maps| . . . . . . .. .. ... .. ... ...

[5.7.2  Microscale flow regime maps| . . . . . . . . ... .. ...

Experimental Heat Transfer Coefficient, H7'C]

6.1 Experimental Results| . . . . . . . ... ... .. ... ...

[6.2  Boiling curve| . . . ... ...

[6.3 Heat Transter Coefhicient, H1T°C| . . . . . . . . .. ... . ... ... ....

[6.4  Comparison of the experimental H'I'C's with published correlations| . . . .

7 Condis: IR ations

[7.1 Single-phase flow and heat transter| . . . . . . . ... ... ... ... ...

[7.1.1 Applicability of macroscale theory to mini and microchannels|

[7.1.2  Entrance length in microchannels| . . . . . . ... ... ... .. ..

[7.2  Boiling two-phase flow| . . . . . .. ... ... 000

[7.2.1 'Two-phase flow visualizations| . . . . . ... .. ... ... ... .

[7.2.2  Boiling heat transfer and thermal performance on microevaporators|

X

99

99

101

104

108

116

117

117

121



A2

Uncertainty in Measured Values . . . . . ... ... ... ... ... .. ..

[A.2.1 Temperature Measurements| . . . . . .. ... ... ... . .....

[A.2.2 Heater Voltagel . . . . . .. .. ... ... ... .. ...,

A3

Uncertainty in Calculated Quantities| . . . . . . . . .. ... .. ... ...

[A.3.1 Massflow, m| . . ... ... ... ... ..

[A.3.2 Channel cross sectional area, Al . . . . . . ... .. ... ... ...

[A.3.3 Channel surface area, Ay . . . . . . . . . ... ... ..

[A.3.4 Channel perimeter, P|. . . . . . . . .. .. ... ... ... .....

[A.3.5 Hydraulic diameter, dp| . . . . . . . ... .. ...

[A.3.6 Mass flux, G|. . . . . . .. ...

[A.3.7 Reynolds number, Re|. . . . . . . . . ... ... ... ... ...

[A.3.8 Heat flux, q,| .. ... ... ... ... ...

[A.3.9 Heat transter coefficient, h{ . . . . . . . . ... ... ...

[A.3.10 Nusselt number, Nvu| . . . . ... .. .. ... ... ..

146

147

148



[A.3.11 Friction factor, f| . . . . . . . . . . ... 164

[A.3.12 Vapor quality, . . . . . . . ... ... 165

(B Detailed Drawings of Microevaporator Assembly Unit| 166
[C Finite Element Models and Thermal Conductivity Measurements| 177
(C.1 Finite Element Models, FEMs| . . . . . . .. ... ... ... 177
[C.2 Thermal conductivity| . . . . . . . . . . .. ..o 180
D Channel Size Measurements| 184
(£ Fluid Properties Correlations| 187
[E.1 Thermal conductivity, kK (W/mK)| . . . . ... ... ... .. ... ... 187
[E.2 Specific heat, ¢, (J/kgK)|. . . . . ... 187
[E.3 Density, p (kg/m?>)| . . . . .. 188
[E.4  Dynamic viscosity, p (Pa.s)| . . . . . ... 188
[E.5 Saturation temperature, Tso (°C)| . . . o o o o oL 188

E.6 Liquid, hs and vapor, h, enthalpy and latent heat of vaporization, h, (kJ/kg)[190
f 9 fg

[ Heat Loss Correlations for Microevaporators| 193
(.1 Microchannell . . . . . . . . 194
[F.2_ Minichannell . . . . . . .. .. . 196

|G Experimental Datal 198

|G.1 Single-phase friction factor for 198 x 241 pm microchannel aftter pressure

| drop correction| . . . . . . . ... 198

|G.2  Average Nusselt numbers for 198 x 241 ym microchannel (isothermal bound-

| ary condition)| . . . . ... oo 201

X1



xii



List of Tables

[3.2  Uncertainties for experimental data (*includes precision and bias errors. The |

| high uncertainty of ~ 44 % is only for the two highest heat fluxes at each |

| mass flux tested).| . . . ... 57

[4.1 Correlations for dimensionless entrance length for mini and microchannels |

| (100<d,<500; 0.5<Re<2000,|Galvis et al] (2012))] . . . . . . ... .. .. 66

[>.1 Results for the positions and vapor slug lengths in the microchannel 198 x |

| 241 pm at 9 watts and 1 ml/min, (video capture rate 20000 fps) . . . . . 7
[5.2  Pressure drop in minichannel 378 x 471 pum, mass flux G ~ 364 kg/m?s| . . 84
[6.1 Results for thermal performance study (microchannel 198 x 241 pm)|. . . . 100

[6.2 Results for experimental and predicted H7'C's (198 x 241 ym microchannel)| 110

[6.3 Results for experimental and predicted HT'C's (378 x 471 ym minichannel)| 111

6.4 MAFESs in the prediction of H'1'C's after sub-cooling correction| . . . . . . . 113
[C.1 Thermal conductivity measurement|{ . . . . . . . . . .. ... .. ... ... 183
[E.1 Saturation temperature vs pressure (Babcock and Wilcox|, [1992)) | . . . . . 189

xiil



[£.2  Enthalpy and latent heat vs temperature (Babcock and Wilcox, 1992) | . . 191

|G.1 Results for single-phase friction factor{. . . . . . . . . ... ... ... ... 199

|G.2 Results for Nusselt number for single-phase (Re = 198, Pr =3.8)] . . . . . 202

|G.3 Slug position microchannel 198 x 241 ym (10 watts, 1 ml/min, video capture

20000 JDS)| . « « o e 203

|G.4 Slug position microchannel 198 x 241 um (15 watts, 1 ml/min, video capture

20000 TDS)| . « o o e 204

|G.5 Slug position microchannel 198 x 241 um (22.5 watts, 1 ml/min, video

capture 20000 fps)| . . . ... 204

|G.6 Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture

20000 fps, vaporslug #1)| . . . . . . ... 205

|G.7 Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture

20000 fps, vapor slug #2)[ . . . . . . ... 206

|G.8 Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture

20000 fps, vaporslug #3)| . . . . . . ... 207

|G.9 Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture

20000 fps, vapor slug #4)| . . . . . .. 208

|G.10 Slug position microchannel 198 x 241 um (12 watts, 2 ml/min, video capture

0000 TP -+« « o o e 209
(G.11 Bubble diameter microchannel 198 x 241 um| . . . . . . . . . .. ... ... 210
|G.12 Active cavities microchannel 198 x 241 ym| . . . . . . . . . . . . ... ... 211
|G.13 Pressure drop microchannel 198 x 241 um, mass flux G ~ 340 kg/m*s|. . . 212
|G.14 Pressure drop microchannel 198 x 241 um, mass flux G ~ 680 kg/m*s|. . . 213
|G.15 Pressure drop microchannel 198 x 241 ym, mass flux G ~ 1024 kg/m*s| . . 214
|G.16 Pressure drop microchannel 198 x 241 um, mass flux G ~ 1296 kg/m=s[ . . 215

Xiv



|G.17 Pressure drop minichannel 378 x 471 pum, mass flux G ~ 730 kg/m?s| . . . 216

|G.18 Pressure drop minichannel 378 x 471 pum, mass flux G ~ 1097 kg/m?s|. . . 218
|G.19 Pressure drop minichannel 378 x 471 pum, mass flux G ~ 1373 kg/m?s|. . . 220
(G.20 HT'C microchannel 198 x 241 um| . . . . . . . . ... ... ... ... ... 222
(G.21 HTC minichannel 378 x 471 um| . . . . . . . .. ... ... ... ... ... 223

XV



List of Figures

M1

Typical thermal resistances for various coolants and heat transter mech-

anisms (Kraus and Bar-Cohen, [1995). Reprinted with the permission of

John Wiley and Sons| . . . . . . . . ... o

M2

Cooling system problem statement flow diagram| . . . . . . . .. ... ...

p1

Flow and heat transfer regimes in a uniformly heated horizontal tube with

moderate heat flux (Ghiaasiann, 2008|). Reprinted with the permission of

Cambridge University Press . . . . . . . .. ... .. ... .. ... ....

14

2.2

Flow regime map for gas-liquid flow in horizontal pipes (Mandhane et al.,

1974). Reprinted with the permission of Cambridge University Press|. . . .

18

p3

Typical flow boiling curve at low quality conditions and transition of flow

through regimes of sub-cooled boiling. Adapted from Ghiaasiann| (2008]) and

(Carey| (2008))] . . . . . ..

19

R4

Major flow boiling regimes in small passages. Adapted from (Cornwell and

Kew, [1992)] . . . . . .

21

5

Comparison of normalized Poiseuille number C* = (P0) cuperimentat / (£20)theory

vs Reynolds number: (o), (e) circular micro-tubes, (%) trapezoidal mi-

crochannels, (LJ) rectangular microchannels (Sharp et al., [2006) | . . . . . .

D6

Apparent friction tactor, f, as a function of Re for smooth and rough-wall

conditions (Natrajan and Christensen|, 2010b) | . . . . . . . . .. ... ...

Xvi



(3.1 (a): main components and fluid flow direction, (b): microevaporator assem- |
bly unit, (c): sight glass section view| . . . . . . .. ... ... ... .... 37

[3.2  Photograph of the experimental tacility| . . . . . . .. ... ... ... ... 38
[3.3 (a),(b): microevaporator assembly unit, (¢) mini and microevaporator, (d) |
wiring board|. . . . . ... L 39

[3.4 Schematic thermocouple locations in evaporator and heater block (dimen- |
sions are shown in Appendix [C] Figure|C.2)| . . . . . ... ... ... ... 42

[3.5  Microchannel design and manufacturing process| . . . . . . . . . ... ... 43
[3.6  Channel width measurement techniques, top: with surface roughness profile, |
bottom: with electronic microscope| . . . . . . . . . ... oL 45

[3.7 Schematic representation for pressure drop measurements in microevapora- |
tor (location of inlet pressure sensor shown in Appendix [B Figure [B.3)[ . . 46

[3.8  Control volume and boundary conditions for the channell . . . . . . . . .. 48
13.9  Heat removed by fluid for 378 x 471 pm microevaporator at G = 1373 kg/m*s| 51
[3.10 Measurement of the gradient of temperature in microevaporator and heater |
blockl . . . . 52

[3.11 Test rig for thermal conductivity measurements| . . . . . . . . . ... ... 54
[4.1 Experimental friction factor for single-phase adiabatic and diabatic rectan- |
gular channel with d, =200 um| . . . . . . . . .. ... .. 59

[4.2  Experimental friction tactor with and without minor losses correctionl . . . 60
[4.3  Comparison of experimental friction factor with traditional correlations tor |
[ macrochannels . . . . . ... .. 61
[4.4  Computational model|. . . . . . . ... ... ... 00000 62
[4.5  Streamwise normalized velocity profiles from simulations for microchannel |
(a=b=100pum, Re =50)[. . . . . . . .. 63



A6

Centerline velocity ratio vs. dimensionless position for microchannel a =

b=100um, 0.5 < Re <2000 . . . . . . . . . . . . . .

a7

Normalized entrance length L./d; from experimental data reported by |Ah-

mad and Hassan| (2006) and from numerical simulation by |Galvis et al|

ROIZ b 0Ja = 1) - o o o o oo e e e e

65

13

Experimental and theoretical average Nusselt number vs Reynolds number

for rectangular channel (d, = 217 um, b/a =0.822)[ . . . . . . . ... ...

68

A9

Experimental results for the average Nusselt number for developing flow

conditions vs Graetz numberl . . . . . . . ...

69

5.1

Flow patterns: left: actual image, right: enhanced with Matlab image pro-

cessing tool, vapor quality estimated from Equation [3.20] (a): bubbly flow

x ~ 0, (b): slug flow x = 0.12, (c¢): churn flow 2 = 0.19, (d): annular flow

x = 0.24, (e): wavy annular flow z = 0.31, (f): inverted annular flow = = 0.47| 73

5.2

Sketch for a vapor slug growth| . . . . . . .. ... ... ...

76

53

Typical meniscus position for vapor and liquid slugs (11 watts, volumetric

flow rate 2 ml/min, channel 198 x 241 um)| . . . . . . . . ... ... ...

B4

Vapor slug growth at different heat fluxes (volumetric flow rate 1 mi/min,

channel 198 X 241 pm)| . . . . . . . . . .

55

Reverse flow, 378 x 471 um, G = 365 kg/m*s, ¢ = 546 kW /m?*: (a): bubbly

flow, (b): bubble on the left starts to grow, (c) to (f): bubble is confined by

the channel wall and the expansion upstream causes flow reversal.| . . . . .

.6

Meniscus displacement: (a)-(c): bubbly expansion and tail meniscus dis-

placement against flow direction, (d)(f): pressure gradient in the channel

overcomes evaporating momentum and tension forces and moves the tail

XViil



XixX

[5.7 Intermittent flow, 378 x 471 um, G = 1373 kg/m*s, q = 3146 kW /m*: |
(a): bubbly flow, (b): churn flow, (c¢): annular flow, (d): Localized dry out |
condition, (e): re-wetting of the channel, (f): wavy annular flow, (g): bubbly |

Cfowl . . . 82

[5.8  Results for pressure drop and channel wall temperature for microchannel |
198 x 241 pm at constant mass flux G ~ 340 kg/ms| . . . . . . .. .. .. 86

[5.9 Pressure drop tor two difterent channel sizes as a function of the heat flux |
for a constant mass flux G ~ 1300 kg/m?s| . . . . . ... ... .. ... .. 87

[5.10 Pressure drop oscillations for 378 x 471 ym minichannel . . . . . . . . . .. 88

[5.11 Summary of boiling flow patterns in a 198 x 241 um microchannel. SP: |
single-phase, S: slug flow, S — A: slug and annular flow, [: inverted annular |

L HOW .« o oo e e 89

[5.12 Flow regime map for 198 x 241 um microchannel. S slug flow, S — A: slug |
and annular flow, [: inverted annular low| . . . . . . ... ... ... ... 91

[5.13 Flow regime map for 378 x 471 yum minichannel. B: bubby How, B — S: |
bubbly-slug flow, S: slug, A: annular flow, /NI intermittent flow|. . . . . 92

[>.14 Comparison between present flow regime map (198 x 241 pm microchannel) |
and the experimental transition lines of Mandhane et al| (1974) . . . . . . 94

[5.15 Comparison between present flow regime map (198 x 241 pm microchannel) |
and transitions lines predicted by [Taitel and Dukler (1976) . . . . . . . . . 94

[5.16 Comparison between flow regime maps: Present flow regime map (198 x |
241 pm microchannel) and pipe (D = 0.509 mm) by Revellin and Thome| |
ROOTE]l .« . o oo 95

[5.17 Comparison between flow regime maps: Present flow regime map (198 x |
241 pm microchannel) and minichannel (250 x 400 um) by Harirchian and |
Garimella (2009b)[. . . . . . .. 96



[5.18 Comparison between flow regime maps: Present flow regime map (198 x |

241 pm microchannel) and microchannel (119x173 pum) by [Singh et al.| (2009)[ 97

[6.1 Boiling curves for microevaporator 198 x 241 ym microchannel| . . . . . . . 102
[6.2 Boiling curves for minievaporator 378 x 471 ym minichannell . . . . . . . . 102
6.3 Average HIT'C' vs vapor quality 198 x 241 ym microchannel . . . . . . . .. 104
(6.4  Average H'I'C' vs vapor quality 378 X 471 ym minichannell . . . . . . . .. 104
(6.5 HT'C vs heat Hlux 198 X 241 yym microchannel| . . . . . . . .. ... .. .. 105
6.6 HTC vs heat lux 378 x 471 ym minichannel . . . . . . .. ... ... ... 105
[6.7  Microevaporators thermal performance curves at G ~ 1300 kg/m?s| . . . . 107
[6.8 Microevaporators thermal performance curves at G ~ 350 kg/m?s| . . . . . 107

[6.9 Comparison of saturated flow boiling HT'C's (198 x 241 pm microchannel)| 112

[6.10 Comparison of saturated flow boiling HT'C's (378 x 471 pm minichannel) . 112

[6.11 Estimation of heat flux due to sub-cooling using the boiling curve] . . . . . 113

[6.12 Comparison of saturated How boiling H7T'C's after sub-cooling correction |

(198 x 241 pm microchannel)] . . . . . . . ... oo oL 114
[A.1 Shunt resistance linear fitl. . . . . . . . . . ... ... L. 151
[B.1 Microevaporator assembly unit - side views| . . . . . .. ... .. ... ... 167
[B.2  Microevaporator assembly unit - isometric and exploded views| . . . . . . . 168
[B.3 Cover plate] . . . . . . . 169
B.4 Side insulationl . . . . . . . .. .. 170
[B.5 Side insulation-internall . . . . . . . ... oo 171
[B.6  Microevaporator single straight channel| . . . . . . . . ... ... ... ... 172
B.7 Heater blockl. . . . . . . . . . 173

XX



[B.8 Lateral gasket| . . . . . . . . ... 174

(C.1 FEM for thermocouple locations at isothermal planes in oxygen free copper |

(C.2 FEM for thermocouple locations at isothermal planes in heater block and |

microevaporator|. . . . . . . . ..o 179
[C.3 Heat, sample temperature and conductivity vs time (case 70°C)| . . . . . . 181
[C.4 Gradient of temperature in sample and calibrated blocks (case 90 °C')| . . . 182
[D.1 Dimension in microchannel . . . . . . ... ..o 0oL 185
[D.2 Dimension in minichannell . . ... ... ... ... 000000 186
[F.1 Heat losses vs channel wall temperature, 1 ml/min (G ~ 350 kg/m?*s)| . . . 194
[F.2 Heat losses vs channel wall temperature, 2 ml/min (G ~ 700 kg/m?*s)| . . . 194
[F.3 Heat losses vs channel wall temperature, 3 ml/min (G ~ 1050 kg/m*s)| . . 195

[F.4 Heat losses vs channel wall temperature, 3.8 ml/min (G ~ 1300 kg/m?*s)| . 195

[F.5 Heat losses vs channel wall temperature, 4 ml/min (G ~ 350 kg/m?*s) . . . 196

[F.6 Heat losses vs channel wall temperature, 8 ml/min (G ~ 700 kg/m?*s) . . . 196

[F.7 Heat losses vs channel wall temperature, 12 ml/min (G ~ 1050 kg/m?*s)[. . 197

[F.8 Heat losses vs channel wall temperature, 15 ml/min (G ~ 1300 kg/m?s)|. . 197

poel



Nomenclature

A : channel cross sectional area, (m?)

Ap : header cross sectional area, (m?)

Ay : heated transfer surface area, (m?)

a : channel width, (m)

Bo : Boiling number = ¢/Ghy,

b : channel height, (m)

[on : specific heat capacity, (J/kgK)

dp, : hydraulic diameter = 4A/P, (m)

d : smallest channel dimension, (um)

f . friction factor coefficient = d;, Ap/2Lpu?
G : mass flux, (kg/m?s)

G, : Graetz number = (dy, /) RePr

h : local heat transfer coefficient, (W/m?K); specific enthalpy, (J/kg)
hyg : latent heat of evaporation, (J/kg)

I . electrical current, (A)

xxil



Jf : liquid superficial velocity, (m/s)

Jg . gas superficial velocity, (m/s)

K : Hagenbach’s factor

K, : loss coefficient for bends

K, : loss coefficient for contraction

K. . loss coefficient for expansion

k : thermal conductivity, (W/mK)

L : channel length, (m)

L. : entrance length, (m)

n : number of data

P : channel wetted perimeter, (m)

Q : heat flow rate, (W)

q : heat flux, (W/m?)

R . electrical resistance, (Ohm); thermal resistance, (K/W)
R, : surface roughness, (um)

Re : Reynolds number = ud;, /v

T . temperature, (K)

U, . inlet velocity, (m/s)

u : velocity component in x-direction, (m/s)

Vihunt  : shunt voltage, (V)
v : velocity component in y-direction, (m/s)

xXx111



We  : Weber number = pu?dy, /o

w : velocity component in z-direction, (m/s)

X : Martinelli parameter

x : vapor quality; channel axial distance from the inlet, m
x,y,z : Cartesian coordinates

Greek Symbols

o : channel aspect ratio = b/a

Ap : pressure drop, (Pa)

ATy, : log mean temperature difference, (K)
i : dynamic viscosity, (Pa - s)

v . kinematic viscosity = u/p, (m?/s)

p . density, (kg/m?)

o : standard deviation

Other Symbols

m : mass flow, (kg/s)

h . average heat transfer coefficient, (W/m?K)
Nu . average Nusselt number = hd, /k;

R : shunt electrical thermal resistance, (Ohm)

Xxiv



Subscripts

app

avg

cb

corr

exp

FD

mn

max

min

nb

opt

out

sat

sub

tp

: ambient
: apparent
. average
. centerline, channel
: convective boiling
: corrected

. experimental

. fully developed
: fluid

: inlet

: junction

: liquid

: maximum

: minor

: nucleate boiling
: optimum

: outlet

: saturation

: sub-cooled

. two-phase

XXV



v : vapor
w : wall

Acronyms

A : Annular flow

B : Bubbly flow

CHF : Critical Heat Flux

HTC : Heat Transfer Coefficient

I . Inverted flow

IB : Incipient Boiling

INT : Intermittent flow

MAFE : Mean Average Error

MFB : Minimum Film Boiling
MHE : Micro Heat Exchanger
ONB : Onset of Nucleate Boiling
OSV  : Onset of Significant Void
PIV  : Particle Image Velocity

S : Slug flow

SP : Single-Phase

TDP : Thermal Design Power, (W)

XXV1



Chapter 1

Introduction

In this chapter, the rapid increases of the heat flux in electronics applications is discussed
in addition to some of the most promising heat transfer solutions for high heat flux ap-
plications. Although, there is not a generalized criterion for the transition from macro
to microscale, the criterion adopted in this thesis is also presented. Finally, this chapter

contains the problem statement, motivation, approach, and outline of this thesis.

1.1 Background

Over the past few years many people in the electronics industry have become concerned
with the increase in heat density at both the chip and package module level. The micro-
electronics and power electronics industries are now facing the challenge of removing very
high heat fluxes of 100 W /cm? and this number keeps rising and might reach 300 W/cm? in
the next few years (Agostini et al., 2007; Ali, 2010). While conventional cooling solutions
have been adequate to meet heat dissipation requirements until recently, no straightforward
extension is possible for such high heat fluxes. Many system architects are hoping for a
technology advancement that will help alleviate their current heat flux concerns. The heat
dissipation of current and future microprocessors has reached values where new cooling

systems are required to satisfy the high heat flux demand. Even with the incorporation of



heat transfer enhancements, e.g. thermal interface materials or heat spreaders, the power
dissipation in integrated circuits and other electronics equipment has reached a threshold
where air-cooling technologies can no longer be relied upon to effectively maintain reliable

operating conditions, and liquid cooling systems must be used.

Traditionally, microelectronic designers have increased chip performance by adding
more transistors onto the surface of the chip. Unfortunately, with this practise, more
heat is generated by the chip. Also, the surface temperature of high heat dissipating
microchips has to be maintained below 80 to 85 °C' in order to ensure the effective and
reliable operation of the electronic circuitry. Cooling systems for integrated circuits are
constrained by both operating temperature and heat flux, making the design of effective,

reliable solutions even more challenging.

The heat flow path in a microprocessor can be represented as a thermal network con-
sisting of a combination of thermal resistances (R), represented as a temperature difference

divided by the heat dissipation or Thermal Design Power (TDPED

P 0

For a given ambient temperature 7, and chip safe operating junction temperature
T}, the TDP can be increased by reducing the overall thermal resistance, which can be
achieved by improving the cooling system (i.e. improving thermal attach technologies,

using different coolants or heat transfer mechanisms, among others).

!The TDP, also referred to as the thermal guideline, is the maximum amount of heat that a component

must dissipate to allow the processor to operate at safe/reliable operating conditions.
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Figure 1.1: Typical thermal resistances for various coolants and heat transfer mechanisms

(Kraus and Bar-Cohen| 1995). Reprinted with the permission of John Wiley and Sons

The thermal resistances for a variety of working fluids and heat transfer mechanisms
are shown in Figure Values of thermal resistance are seen to decrease from a nominal
100 K /W for natural convection in air, to 30 K /W for forced convection in air, to 0.8 K/W
in water liquid forced convection, and less than 0.2 K/W for boiling with water. As a
reference, a microprocessor with a typical die size surface area of 2.25 cm? and a heat
dissipation of 300 W/cm? could reach a thermal resistance of R ~ 0.09 K/W (assuming
a differential temperature 7; — T, = 85 — 24 = 61 °C'). This value of thermal resistance
or lower can be attained by a cooling system using water as the working fluid and boiling
as the heat transfer mechanism. From Figure clearly boiling of fluorochemical liquids
or water can achieve lower thermal resistance than other heat transfer mechanisms such
as forced or natural convection. In particular, the thermal resistance follows a globally
decreasing trend with increasing heat flux and decreasing hydraulic diameter. Therefore,

boiling of water seems to be a promising heat transfer mechanism to be used to solve the



challenge of cooling the next generation of high heat flux computer chips.

Some liquid cooling techniques are already in production or at a research stage, cir-
culating liquid through separate cooling modules attached to the integrated circuits, or
through microchannels fabricated onto the back of chips using high-temperature bonding
techniques. Enhanced heat transfer capability using microchannels has been demonstrated
in the literature in both single and two-phase flow as compared to their macro counter
parts. Therefore the combination between microchannels, boiling as heat transfer mech-
anism, and water as the working fluid is very promising for the development of cooling

systems for high heat flux applications.

There is no generalized criterion in the literature to define a threshold for transition
from macro to a microscale channel, but for the purpose of this research, the criterion

suggested by Kandlikar et al.| (2006a)) is adopted.

e Conventional channels: d, > 3mm
e Minichannels: 3mm > d, > 200 um

e Microchannels: 200 ym > ds > 10 um

d,: smallest channel dimension

Although, boiling in microchannels seems to be an attractive solution, it has been
somewhat limited because of flow boiling instability. Also, it is difficult to have low boil-
ing temperatures in the evaporator using water as the coolant, unless the cooling system
is operated at sub-atmospheric pressures. The flow boiling approach has several poten-
tial advantages over competing technologies, such as providing nearly uniform chip base
temperature, cooling of hot spots, higher heat transfer coefficient, and minimizing energy
consumption. Even though flow boiling has these advantages, some operational challenges
need to be addressed like the need for low pressure water or a suitable refrigerant to match
the saturation temperature with the range of operating temperatures found in electronic

systems, unstable operation, higher junction temperatures after critical heat flux, and



the lack of fundamental understanding of the flow boiling phenomenon in microchannel

passages.

In spite of intensive research activity in recent years, many issues related to the heat
transfer characteristics in small geometries still need to be clarified. It appears that boiling
heat transfer, pressure drop and flow patterns in microchannels cannot be properly pre-
dicted by the existing macroscale theories. This is commonly explained by the fact that
the physical mechanisms that are potentially dominant in microchannels are less impor-
tant in macrochannels e.g. inertial and/or capillary forces are dominant compared with

gravitational forces.

Although there are extensive applications of flow-boiling in refrigeration, air condition-
ing, and cooling of electronics among others, there is still a need for improved understanding

of the two-phase flow involving boiling and condensing of working fluids in microchannels.

1.2 Problem Statement

Miniaturization of electronics, motivated by new and exciting application areas and modern
fabrication techniques, has led to increases in chip power and high packaging densities.
Although, most chip manufacturers have implemented design alternatives to increase chip
performance, the ability to dissipate heat remains the principal impediment to future
performance enhancements. Therefore, effective solutions are required that control the
production of heat, which seems unlikely unless a technology breakthrough occurs (i.e.
bipolar to CMOS technology) or more effective methods of cooling are developed that

liberate excess heat, thereby controlling integrated circuit temperatures.

Alternative techniques, such as Core technology or other novel techniques are expected
to increase chip performance. However, they are currently limited by the available cooling
technologies. Therefore, new novel cooling technologies are required to allow for advances
in chip performance. Figure summarizes the cooling system problem flow diagram.

In order to increase chip capacity, several techniques are used (more transistors, parallel



processing or long term solutions). Unfortunately, many of theses performance enhance-

ments result in excessive heat generation that cannot be controlled by present day cooling

solutions. Therefore, new cooling strategies are required.
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Figure 1.2: Cooling system problem statement flow diagram

Boiling is one of the most promising heat transfer mechanisms for electronics cool-

ing but the understanding of the boiling process mechanisms in microchannels is still a

challenge for the future development of two-phase cooling systems. An understanding of

heat transfer mechanisms associated with microchannels boiling is not well understood,

and this uncertainly is further complicated in microchannels where capillarity forces, and



experimental accuracy, among others factors are more crucial.

Two-phase flow mixtures can form a variety of flow patterns. The behavior of a vapor-
liquid mixture including many of the constitutive relations that are needed for the solution
of two-phase conservation equations depends strongly on the flow patterns. Although,
simplified models can be obtained from the mass, momentum and energy equations ig-
noring the details of the flow patterns in the channel, knowing the flow patterns allows
more suitable assumptions to be applied for each particular flow pattern, leading to more
accurate models. Therefore, methods for predicting the occurrence of the major two-phase
flow patterns are thus useful, and also required for more accurate modeling and analysis

of two-phase flow systems.

Current methods for predicting the flow patterns are far from perfect. The difficulty
and challenges arise out of the extremely varied morphological configurations that a vapor-
liquid mixture can acquire, and these are affected by numerous parameters. Knowledge of
dominant two-phase flow patterns in mini or microchannels is a key factor in developing ac-
curate and physically sound predictive tools for designing cooling systems. Unfortunately,
interfacial interactions between the vapor and liquid phases during flow boiling are often

far too complex to permit accurate quantitative assessment of flow patterns.

Some attributes of two-phase flow in microchannels are not fully understood, and there
are inconsistencies among experimental observations, phenomenological interpretation, and
theoretical models. Therefore, experimental observations of the two-phase flow boiling are
required in order to better understand the two-phase flow mechanisms. These observations
may provide improved information that can lead to more accurate analytical and empirical
models, and better cooling system designs that can be used for dissipating the heat demand

of current and future electronics.

1.3 Motivation

The capacity of integrated circuits is traditionally increased by adding more transistors

on the surface of the chip. The number of transistor on integrated circuits double ap-
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proximately every two years according to Moore’s law. However, the 2010 update to the
International Technology Roadmap for Semiconductors suggests that for the first time in
more than half a century, this trend will begin to slow near the end of 2013, after which
time transistor counts and densities are to double only every 3 years. This drastic change
from Moore’s law is an indication of the limitation on the heat dissipation capacity of

current cooling systems.

Natural, and forced air convection cooling systems are no longer satisfactory solutions
for the current high heat flux applications, and even liquid cooling technologies are lagging
behind. Therefore, new cooling systems are required for current and future high heat flux

applications.

In this thesis, a potential cooling system is experimentally studied to satisfy the high
heat flux demand for future applications. A successful novel cooling system will allow chip
manufacturers to produce more powerful integrated circuits. The study is performed in
microchannels because these systems are capable of rejecting large heat loads while being
relatively small in size. In this thesis, an increase in the heat transfer coefficient is also
considered using flow boiling instead of single-phase force convection as the heat transfer

mechanism.

There are several studies of two-phase flow in microchannels in the open literature
but most involve adiabatic conditions at the boundary between the fluid and the channel
wall. Although, there are some studies involving diabatic two-phase flow (boiling), these
are with fluorocarbons instead of water as the working fluid. Using water as the working
fluid in microchannels and boiling as the heat transfer mechanism seems to be one of the
most promising techniques for the development of cooling systems for future applications.
Unfortunately, the study of boiling in microchannels is very complex, and needs to be
better understood before being implemented with confidence in a cooling system. It is
important to mention that there is not much research with water as the working fluid in

micro boiling systems, but it is attractive for its high latent heat of vaporization.

All observations and analysis in this research are expected to help with a better un-

derstanding of the physical mechanisms during boiling of water in mini and microchannels



which is a key factor in the development of cooling systems for future high heat flux ap-

plications.

1.4 Approach

New cooling systems for high heat flux applications require high heat transfer coefficients
and compact size. This can be achieved with microchannels and boiling as the heat transfer
mechanism. Therefore, this thesis is focused on the experimental investigation and analysis
of boiling two-phase flow data performed in horizontal channel microevaporators. Single
channel microevaporators with a rectangular cross sectional area are used in order to
characterize the two-phase flow boiling since previously developed experiments containing
multiple channels have a non-uniform distribution of the flow in the channels. Water is

used as the working fluid because it offers thermal advantages over other coolants.

Microevaporators with different channel size are used to investigate the flow patterns,
the effect of the mass flow, channel size, and heat flux in the heat transfer coefficient and
pressure drop. The flow patterns are characterized through high-speed visualization and
then presented in a flow regime map which is compared with the traditional flow regime
map proposed by Taitel and Dukler| (1976) and other flow regime maps available in the
literature for microchannels. These flow patterns and flow regime maps will provide impor-
tant information to better understand the complexity of the two-phase flow mechanisms.
Simultaneously with the high-speed visualization, pressure drop, mass flow, heat flux, and
temperatures at different locations on the microevaporators are recorded in order to eval-
uate the thermal performance in the microevaporators. Once the flow patterns and heat
transfer study is performed, published correlations for heat transfer coefficient are assessed

based on the measurement data.

Prior to conducting the two-phase flow boiling experiments, single-phase flow studies
are performed to quantify heat losses and to assess the applicability of pressure and heat
transfer coefficient macroscale models to microchannels. This study is achieved by com-

paring experimental data for friction factor and Nusselt number with theoretical values



obtained from macroscale models. The experimental data were obtained from a single

channel heat exchanger.

1.5 Outline

This dissertation provides a detailed experimental study of boiling two-phase flow in mi-
crochannels with rectangular cross sections. The thesis is arranged in the following order

with additional detail given in the appendices when deemed necessary.

1. Introduction: Contains the background, problem statement, motivation, and ap-

proach.

2. Fundamentals and Literature Review. A review of the fundamentals and state-of-the-
art on boiling, two-phase flow patterns, and boiling heat transfer are discussed. The
fundamentals of boiling at the macroscale are initially introduced. The discussion
is focused on the heat transfer coefficient, flow regime maps, and boiling curves,
followed by the fundamentals of boiling at the microscale. The discussion then turns
to a brief overview of single-phase flow and boiling two-phase flow in microchannels.
Attention is paid to a comparison between predictions of the conventional theory
and experimental data, obtained during the last decade, as well as to a discussion of
possible sources of unexpected effects which were revealed by a number of previous

investigations.

3. Experimental Facility: The experimental test rig and data reduction are described

and validated against single-phase data.

4. Single-Phase Flow and Heat Transfer Coefficient: This chapter presents and discusses
the pressure drop and and heat transfer results from the single-phase experiments in a
microchannel with water as the working fluid. The experimental data are used to val-
idated the applicability of macroscale theory to microchannels and the identification

of heat losses in the test fixture.
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5. Two-phase Flow Visualizations: The results from the two-phase flow visualization
are presented. Flow patterns are presented in the form of flow regime maps and
compared with other experimental data reported in the literature. Flow reversal,
bubble size, bubbly frequency, intermittent flow, and pressure drop oscillations in

two-phase flow boiling are also discussed.

6. Experimental Heat Transfer Coefficient: The effect of the inlet sub-cooling, mass
flux, heat flux, and channel size on the heat transfer coefficient are reported. The
results are shown in the form of boiling curves and heat transfer coefficient vs quality
and heat flux. Some models for the heat transfer coefficient reported in the literature

are compared with the experimental data.

7. Conclusions and Recommendations: The major contribution resulting from this work
are summarized and recommendations for extensions to the work presented here are

suggested.
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Chapter 2

Fundamentals and Literature Review

This chapter contains fundamentals of boiling heat transfer where the two types of boiling
are discussed. Flow boiling heat transfer, flow regime maps, boiling curves in conventional
and microscale, and a brief description of the typical approaches for modeling in two-
phase flow are also discussed. Finally, a literature review of single-phase liquid flow in

microchannels and two-phase flow boiling is presented.

2.1 Fundamentals of boiling

Boiling is the process in which heat transfer leads to a phase change of a substance from
a liquid to a gas. Boiling will not occur if the wall temperature is below the saturation
temperature. Saturation flow boiling occurs when the bulk liquid reaches saturation tem-
perature and sub-cooled flow boiling exists when the bulk liquid temperature remains below
its saturation value but the surface is hot enough for bubbles to form. Bubbles formed at
the wall will condense as they move out of the developing saturation boundary layer, but
the appearance of these bubbles will affect the heat transfer between the wall and the fluid.
Sub-cooled internal flow boiling has been of particular interest as a mean of providing high
heat flux cooling. At the present time, one of the simplest ways to achieve high heat flux

cooling in microelectronics is with a sub-cooled flow boiling process (Carey, [2008)).
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There are two types of boiling: pool boiling refers to boiling from a heated surface
submerged in a large volume of stagnant liquid, where the fluid flow is caused by a natural
convective phenomena only, and flow boiling, where the boiling occurs in a fluid which
is flowing over a heated surface. Flow boiling is considerably more complicated than
pool boiling, owing to the coupling between hydrodynamics and the boiling heat transfer
process. There are three different boiling heat transfer mechanisms: in nucleate boiling,
steam bubbles form at the heat transfer surface and then break away to be carried into the
main stream of the fluid. There is also convective boiling, where heat is conducted through
the liquid which evaporates at the liquid-vapor interface. Finally, in film boiling, the heat
is transferred by conduction and radiation through a film of vapor that covers the heated

surface and the liquid vaporizes at the vapor-liquid interface.

Experimental observations and physical arguments indicate that the basic phenomenol-
ogy of flow boiling in microchannels is similar to that in large channels as long as there are
defects on the heated surface that have characteristic sizes that are smaller than the flow
channel cross sectional dimensions. Therefore, bubbles nucleate on the heated wall crevices
in such small channels, leading to the onset of nucleate boiling and further downstream
the bubbles are released into the bulk flow and lead to the development of a two-phase
flow field. The confinement resulting from the small size channel can affect the bubble

dynamics.

2.1.1 Macro flow boiling

Heat Transfer Coefficient: Boiling is first initiated at the Onset of Nucleate Boiling,
ON B, when some of the bubbles forming on crevices can survive condensation (e.g. no
collapse of the vapor bubble). As the vaporization process proceeds, the vapor content
of the flow increases with the distance along the tube and different flow pattern such as

bubbly, plug, annular, and mist flow are observed as shown in Figure [2.1]
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Figure 2.1: Flow and heat transfer regimes in a uniformly heated horizontal tube with mod-

erate heat flux (Ghiaasiann, 2008)). Reprinted with the permission of Cambridge University

Press

Regimes of slug, stratified, or wavy flow may also be observed depending on the flow
conditions. The qualitative axial variation of the heat transfer coefficient is also shown in
the figure. The heat transfer coefficient often (but not always) increases with the down-
stream distance prior to the onset of dry-out. Furthermore, as the wetted fraction of the

[4

wall decreases with downstream distance, more of the wall becomes “inactive” (dries) and

the heat transfer coefficient progressively decreases.

Nucleate boiling is usually the dominant heat transfer mechanism near the ON B and
low equilibrium quality. As the liquid film on the wall thins, film evaporation may become

so effective that it is the dominant mechanism. The film may disappear completely from
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portions of the tube wall leading to partial dry-out. Between low and moderated qualities,
both mechanisms may be important. In some cases nucleate boiling may be completely

suppressed, leaving film evaporation as the only active vaporization mechanism.

The two-phase flow modeling for heat transfer and pressure drop has typically been
treated analytically or empirically. Analytical models use the mass, momentum, and en-
ergy equations, but the difficulty in applying these equations in the interpretation of the
two-phase flow systems is that detailed information on the local mass flux, velocity and
density is practically never available. Data on the distribution of these parameters across
the channel are needed. The distribution depends on the respective total flow rates of the
two-phases, upon their physical properties, geometry, and is closely linked with the flow
pattern. In order to evaluate the momentum and energy balances, it is therefore necessary
to measure the distribution of local values across the channel of some variables (e.g. den-
sity, phasic mass flows, phasic velocities). In most practical cases, however, experimental
techniques are not available to make these measurements, and approximations are used as
a reasonable alternative. The most basic approximations are considered in the homogenous
and separated flow models. The homogenous model, also known as the “friction factor”
or “fog flow” model, considers the two-phases to flow as a single-phase, possessing mean
fluid properties, and the separated model considers the phases to be artificially segregated
in two streams, one of liquid and one of vapor with constant but not necessarily equal

velocities.

Empirical models have been extensively proposed. Several researches compare their
own experimental results with published correlations. Most of the conclusion are that
the empirical models are not able to predict their experimental data even under a similar
range of operating conditions for which the correlations were obtained. These models are
typically adjusted (if possible) to match their experimental data through modifying selected
“calibration” parameters in the model. In summary, analytical or empirical modelling
of two-phase flow is a very difficult task, and a generalized model for heat transfer or
pressure drop is still not available. Therefore, most of the current efforts in modeling are

concentrated on the generation of models valid for a particular flow pattern instead of a
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generalized model trying to cover all flow patterns which is difficult or may be an impossible

task.

Flow Regime Maps: Flow patterns are widely used predictive tools for two-phase flow
studies and are presented in the form of so-called flow regime maps, a two-dimensional plot
attempting to separate the flow patterns into particular areas. They are often empirical and
generally plotted based on the phasic superficial velocities (j;: liquid superficial velocity,
Jg: gas superficial velocity) or coordinates that include the physical properties of the gas
and liquid phases. Recent two-phase flow regime maps found in the literature are plotted
in the form proposed by |Steiner| (1993)) with quality on the horizontal axis and mass flux

on the vertical.

Baker(1954) developed one of the earliest empirical flow regime maps and numerous
other attempts to develop a generalized flow regime map followed (Mandhane et al., 1974}
Taitel and Dukler, (1976 Weisman et al., [1979). Most noteworthy among these was the
pioneering effort by Taitel and Dukler, defining and mapping the four predominant flow
regimes (stratified, intermittent, bubble, and annular) with superficial gas and superficial
liquid coordinates and proposing physics based criteria for the transition from one regime to
the next. A comprehensive method of predicting flow pattern transitions over the complete
range of pipe inclinations has been put forward by Taitel (1990). This model relies on the
previous work by [Taitel and Dukler| (1976 [1977)); Dukler| (1978); [Barnea and Taitel (1976).

Taitel used the term intermittent flow to cover elongated bubbles, slug and churn flows.

The |Taitel and Dukler| (1976) methodology relies on adiabatic models that ignore the
thermal interactions between phases when heat is added or extracted from the flowing two-
phase mixture in diabatic conditions. Such an adiabatic model can be expected to provide
better flow regime predictions as the applied heat flux decreases (Bar-Cohen et al., 1979)).
Nevertheless, the model has proven to be exceedingly useful for diabatic conditions and

has demonstrated its first-order accuracy in numerous studies, including those performed

by Taitel et al.| (1978); Frankum et al.| (1997).

Most flow maps are only valid for a specific set of operating conditions (type of fluid,

channel geometry, size, and orientation, adiabatic or diabatic flow, etc.). Therefore, efforts
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are being made to propose generalized flow maps. One of the first unified models for
predicting flow regime transitions in channels of any orientation, based on simple physical
criteria and using familiar two-phase non-dimensional groupings was proposed by Taitel
and Dukler| (1976). When the theoretical equations are solved in dimensionless form, five
dimensionless groups emerge in their analysis: modified Froude number (relating inertial
force to gravitational force), the T parameter (relating liquid pressure drop to buoyancy),
the Martinelli number (relating liquid pressure drop to gas pressure drop), the K parameter
(product of the modified Froude number and the square root of the superficial Reynolds
number of the liquid), and the Y parameter (forces acting on the liquid due to gravity and
pressure drop, Y=0 to horizontal orientation). Since the original study, several attempts
modifying Taitel’s approach or using more suitable dimensionless parameters have been

used in order to generalize the flow regime maps.

Flow regime maps in adiabatic and diabatic conditions are important in the study of
two-phase flow. In fact, the physical mechanisms controlling two-phase pressure drops
and heat transfer coefficients are intrinsically related to the local flow patterns (Collier
and Thome, |1994; |Carey, [2008; [Kattan et al 1998; Cheng et al., 2008a,b)), and thus flow

pattern prediction is an important aspect of two-phase heat transfer and pressure drop.

The majority of the widely used regime maps are based on data for vertical or horizontal
tubes with small and moderated diameters (typically 1 < d < 10 ¢cm). The flow regime map
of Mandhane et al| (1974), displayed in Figure , is probably the most widely accepted
map for gas-liquid flow in horizontal pipes. They defined and mapped four predominant
flow regimes (stratified, intermittent, bubble, and annular) with superficial gas and super-
ficial liquid coordinates and proposed a physical criteria for the transition from one regime
to the next. The difficulty of identifying flow regimes and their transitions comes mainly
from the subjectivity of the observer and the lack of agreement in the description and

classification of the flow patterns.
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Figure 2.2: Flow regime map for gas-liquid flow in horizontal pipes (Mandhane et al.)

1974). Reprinted with the permission of Cambridge University Press

A large number of experiments have been conducted with adiabatic macroscale smooth
channels over the past decades in horizontal, vertical, and inclined orientations using gas-
liquid as working fluids. Compared to the flow regime maps available for adiabatic circular
tubes, non-circular channel data show little difference if the hydraulic diameter is bigger
than 70 mm. Flow regime boundaries are also similar between small rectangular channels
and small circular tubes (1-5 mm) in horizontal and possibly vertical orientation
1999)). Typically, at low gas and high liquid flow rates, bubbly flow occurs, and at
high gas flow rates and low liquid flow rates, an annular flow regime is observed. At
intermediate gas and liquid flow rates, different flow regimes such as slug, wavy, plug, etc.

may occur.

Boiling Curve: The thermal performance during pool and flow boiling is being studied

using the boiling curve introduced by Nukiyama (1934). The effect of mass flux in the
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flow boiling curve and the sequence of regimes associated with sub-cooled boiling for an
horizontal pipe flow are shown in Figure 2.3} The effect of local equilibrium quality in the
boiling curve is rather complicated, with increasing in the Critical Heat Flux, CHF as the
equilibrium quality decreases|/Ghiaasiann (2008). The boiling curve is divided in sub-cooled
boiling (after the ON B point), saturated boiling, transition boiling (after Critical Heat
Flux point, CHF'), and film boiling region (after Minimum Film Boiling point, M F'B).
The boiling curve or heat transfer coefficient is particularly sensitive to mass flux G in
single-phase liquid forced-convection, partial sub-cooled boiling, and post-CHF' regimes
but it is insensitive to mass flux in the fully developed sub-cooled boiling and saturated

boiling regions as illustrated on Figure [2.3]
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Figure 2.3: Typical flow boiling curve at low quality conditions and transition of flow

through regimes of sub-cooled boiling. Adapted from Ghiaasiann| (2008) and |Carey| (2008))
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Sub-cooled boiling can be partial and fully developed after Onset of Significant Void,
OSV, where bubbles typically depart from the surface. During partial sub-cooled flow, both
forced-convective and nucleate boiling effects are important, with nucleate boiling effects
increasing in strength as the flow proceeds downstream. Eventually, the nucleation site
density becomes so high that the nucleate boiling completely dominates the heat transfer
process. In saturated forced-flow boiling (region between vapor quality =0 and the CHF
point) nucleated boiling is predominant where quality is low (a few percent), and force
convective evaporation is predominant at high qualities representing annular flow, and

elsewhere both mechanisms can be important.

Nucleated boiling heat transfer (h,;,) and forced-convective boiling heat transfer (h)
both contribute to the total heat transfer coefficient (h) in saturated flow boiling. Nucleate
boiling is characterized by the formation of vapor bubbles at the heated wall. Convective
boiling is characterized by conduction and convection through a liquid film at the heated
wall, and vaporization at the liquid/vapor interface. From numerous macroscale investiga-
tions it is known that when flow boiling is dominated by the nucleate boiling mechanism,
the heat transfer coefficient increases with increasing heat flux (or wall superheat) and
saturation pressure, and is independent of mass flux and vapor quality. Furthermore in
convective-dominated flow boiling, the heat transfer coefficient is independent of heat flux

and increases with increasing mass flux and vapor quality.

The heat transfer coefficient correlations can generally be divided into three groups
(Ghiaasiann), 2008): The summation rule, proposed by |Chen| (1966)), where the heat trans-
fer coefficient is considered to be the addition of the nucleate and convective boiling contri-
bution (h = hy, + he), the asymptotic model, which assumes one of the two mechanisms to
be dominant, (h™ = A", + h%, with n > 1, h asymptotically approaches to h,, or hy). The
third group constitutes the flow-pattern dependent correlations, this methodology consists

of a flow regime map and regime-specific models and correlation for heat transfer.
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2.1.2 Micro flow boiling

Flow boiling is attractive over single-phase liquid cooling because of its high heat transfer
coefficient and higher heat removal capacity for a given mass flow rate of coolant (Kandlikar,
et all [2006a)). Flow boiling systems can carry larger amounts of thermal energy through

the latent heat of vaporization, whereas single-phase systems rely only on the sensible heat.

It is believed that nucleation criteria in small channels are not significantly different
from the conventional theories for large channels. With flow boiling in small channels the
bubble growth is similar to that in pool boiling, except that the flow causes the bubbles
to depart early. In fact, most of the recent theories for small channels are extension of
the pool boiling nucleation model proposed by Hsu| (1962). One of the main differences
observed between conventional and small size channels is that buoyancy in small channels
is insignificant but inertial viscous and capillary effect are crucial (e.g. stratified flow is

not observed in microchannels, effect of tension force must be considered in small size

o QO&? C

Isolated bubbles Confined bubbles Annular/slug

channels).

Figure 2.4: Major flow boiling regimes in small passages. Adapted from (Cornwell and

Kew, [1992)

Typical flow regimes in small passages are shown schematically in Figure The
departing and growing bubbles contribute to isolated bubble flow which eventually spans
the entire smaller dimension of the channel forming a confined bubbles regime. Finally,
the bubbles grow significantly in the axial direction and eventually lead to the collapse
and dispersal of some of the liquid slugs that separated neighboring bubbles. The confine-
ment of bubbles in microchannels leads to a different growth pattern of bubbles between

conventional and small channels.

21



Flow boiling in microchannels can be affected by superficial tension forces, boundary
conditions that behave differently in comparison with macrochannels (e.g. jump wall tem-
perature, wall velocity slip at Knudsen number much bigger than 1; Kn >> 1), or even

continuity is not valid and rarefied gas dynamics theory is needed.

Studies on microscale flow regime maps have increased greatly in recent years but most
of theses studies are focused on adiabatic conditions rather than on diabatic two-phase
flows. The develop of diabatic flow maps is more challenging due to the coupled effects
between the flow dynamics and heat transfer, and the scale effects at the microscale level.
Important factors influencing these flows are nucleate boiling, evaporation or condensation
of liquid films, dry-out, heat flux, mass flux, acceleration/deaceleration of the flows, and

surface tension among others.

There are a number of studies on flow patterns and flow maps in microscale channels but
there is no proven consistency of observations for similar fluids under similar test conditions
taken by different researchers, also the effects of channel shapes and physical properties in
the flow regime maps need to be clarified. |(Cheng et al. (2008c) presented a comprehensive
review of the studies of microscale gas-liquid two-phase flow patterns and flow patterns
maps at adiabatic and diabatic conditions. Although, it appears that the adiabatic flow
regime maps and flow transition models perform reasonably well with diabatic flow boiling
data (Celata et all [1991; [Frankum et al., [1997), there is no proven evidence that this is
also applicable at the microscale level. In general, compared to macroscale geometries, the

study of flow patterns in microscale and diabatic conditions needs to be developed.

2.2 Single-phase liquid flow in microchannels

Thirty years ago [Tuckerman and Pease (1981) introduced the concept of microchannels
to the electronics cooling industry. Since the heat transfer coefficient generally increases
with decreasing size, the passage size should be made as small as possible. This results in
a dense package with higher heat transfer and a larger surface area-to-volume ratio than

a conventional cooling device. However, the benefits are tempered by increased pressure
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losses with small passages, in addition to manufacturing challenges. In order to minimize
pressure drop but maximize thermodynamic performance, [Khan et al.| (2006) and |Galvis
and Culham| (2010)) used an entropy generation minimization method where pressure drop

and heat transfer were simultaneously evaluated.

The early applications of microchannels involved micromachined devices (e.g., microp-
umps, microvalves, and microsensors), and more current advancements are used in the
development of inkjet printer heads, lab-on-a-chip technology, micro-propulsion, micro-
thermal technologies, and even cooling of turbine blades (Galvis et al., [2008)). In engi-
neering thermofluid systems, such as heat exchangers, laminar flow in non-circular ducts is

encountered, for example, in automotive coolers, cold plates, and microchannel heat sinks.

In dealing with liquid flows in minichannels and microchannels with low Knudsen num-
bers (Kn < 1073), the flow is not expected to experience any fundamentals changes from
the continuum approximation employed in macroscale theories (Kandlikar et al., [2006a).
Channels larger than 1 pm using water can be treated as continuous media and the clas-
sical macroscale theory is applicable (Gad-el-Hak, 1999)). However, there are a number
of contradictory studies on the friction factor in microchannels and the transition from

laminar to turbulent flow.

2.2.1 Friction factor

Several authors evaluated the applicability of the classical macroscale correlations to micro-
channel fluid flow and heat transfer (Park and Punch 2008; Hrnjak and Tul [2007; [Yang
and Lin, [2007; Qi et al., 2007}, Papautsky et al.l 2001} [Jiang et al., [1995; Brody and Yager|,
1996). Through a comparative analysis of results from several studies, |Park and Punch
(2008)), |Sharp et al.| (2006) and Papautsky et al. (2001) showed that Poiseuille numbers
Po = f Re, where f is the friction factor and Re is the Reynolds number at the microscale,
can be similar or vary appreciably from those expected based on conventional macro Hagen-

Poiseuille theory as shown in Figure [2.5]
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Figure 2.5: Comparison of normalized Poiseuille number C* = (P0)cyperimentat/ (PO)theory
vs Reynolds number: (o), (e) circular micro-tubes, (V) trapezoidal microchannels, (OJ)

rectangular microchannels (Sharp et al., 2006)

Yarin et al.| (2009) suggested possible reasons for disparity between the theoretical pre-
dictions and measurements obtained for single-phase flow in microchannels. The analysis
was performed using experimental data from several publications including smooth and
rough microchannels. They attribute the inconsistency between theory and experimental
friction factor to the discrepancy between the actual conditions of a given experiment and
the assumptions used in deriving the theoretical value, error in measurements, and effects

associated with decreasing the characteristic scale of the problem.
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conditions (Natrajan and Christensen), 2010b)

Furthermore, the results of many groups have indicated that the transition from laminar

to turbulent flow occurs at anomalously low Re in comparison to macroscale transition

(Hsieh et al., [2004; |Qu et al.,|2000; |Peng et al.; 1994} Mala and Li, 1999 Peng and Peterson|,

1996). The onset of early transition as shown in Figure[2.6{was attributed to relatively high

surface roughness that can have a pronounced effect on the flow behavior at these scales

(Natrajan and Christensen| 2011} [2010ab). In contrast, experiments by other researchers

have revealed transitional Re that are quite comparable to that observed at the macroscale

(Barlak et al.|[2011; Natrajan and Christensen, |2007; Li and Olsen, 2006; |Sharp and Adrian,

2004; Qu and Mudawar, [2002; Judy et al., 2002).
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In light of this, conventional formulations that are applicable to macro-size channels
may not be valid for microchannels. As the field of microfluidics continues to grow, it is
becoming increasingly important to understand the physical phenomena governing fluid
flow and heat transfer in microchannels as well as the limitations associated with applying

design correlations developed for macroscale flows in microfluidics.

2.2.2 Heat transfer coefficient

Heat transfer in straight tubes and channels has been a subject of much research. In
many cases theoretical predictions in this field agree fairly well with known experimental
data related to heat transfer in the conventional size channels. Single-phase heat transfer in
microchannels may be affected by viscous energy dissipation, axial heat conduction, electro-
osmotic effects, property variation effects, channel surface conditions (relative roughness),
and experimental uncertainties (Goziikaral, 2010; Tso and Mahulikar, [1998| 1999, 2000;
Tunc and Bayazitoglul, 2001; Koo and Kleinstreuer, 2004; |Maranzana et al., 2004). Com-
prehensive surveys can be found in Hetsroni et al.| (2005ab)); [Morini| (2004)); Sobhan and
Garimella (2001)); Kandlikar and Grande| (2002); Guo and Li (2003); |Celata et al.| (2004)

The influence of the geometric parameters of the channel and the thermophysical prop-
erties of the fluid on the flow and heat transfer were studied by |Li et al. (2004) using
numerical simulation in a micro-heat sink model with a 10 mm long silicon substrate,
with rectangular microchannels, 57 ym wide and 180 um deep. The results indicated that
thermophysical properties of the liquid can significantly influence both the flow and heat
transfer in the microchannel heat sink. The effect of axial conduction, viscous dissipation,
and variable properties were studied by Ramiar and Ranjbar| (2011). The results showed
that increasing the thermal conductivity of water (e.g. using nano-particles) enhances
heat transfer characteristics of the channel and in contrast, viscous dissipation causes the

Nusselt number and friction factor to decrease.

Giudice et al.| (2007) studied numerically the effects of viscous dissipation and tem-

perature dependent viscosity in thermally and simultaneously developing laminar flows of
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liquids in straight microchannels. They concluded that, in laminar forced convection in
straight microchannels, both temperature dependence of viscosity and viscous dissipation

effects cannot be neglected for a wide range of operating conditions.

Lelea et al.| (2004]) experimentally evaluated the developing heat transfer and fluid flow
of water in tubes with internal diameters 0.1, 0.3, and 0.5 mm with 100 < Re < 800.
The experimental results confirmed that, including the entrance effects, and boundary
conditions imposed in the experiments, the conventional or classical theoretical approach
can be employed in predicting heat transfer behavior in microchannels. A similar conclusion
was reported by Lee et al.| (2005)) using rectangular channels ranging in width from 194 pym
to 534 um, with the channel depth being nominally five times the width and 300 < Re <
3500.

The thermal transport characteristics of transitional and turbulent flow through smooth
and rough wall rectangular minichannels with hydraulic diameter d;, = 600 um and 1300 <
Re < 5200 under constant heat flux conditions was investigated by Natrajan and Chris-
tensen (2011). A determination of the bulk Nusselt number indicated enhancement in con-
vective heat transfer over the smooth-wall case with increasing surface roughness in both
the transitional and turbulent regimes. In addition, their data support the applicability of
macroscale convective heat transfer correlations for the design and optimization of smooth

wall micro-fluidic systems where axial conduction and viscous heating are negligible.

By comparing the available experimental data on single-phase convective heat transfer
through microchannels, it is evident that further systematic studies are required to generate
a sufficient body of knowledge of the transport mechanism responsible for the variation of

the flow structure and heat transfer in microchannels.

2.3 Boiling two-phase flow

When a liquid is vaporized in a heated channel, the liquid and the vapor interact based

on the relative phase constituents to form a range of flow patterns. The particular flow
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pattern depends on the conditions of pressure, flow, heat flux, and channel geometry. Since
it is extremely difficult to “track” the continuous change of all the thermal and hydraulic
properties of the flow (on time and position), the study of boiling to date is largely empirical
rather than analytical (Collier and Thome| [1994). The methods used to analyze two-phase
flow are based on the basic equations governing the conservation of mass, momentum,
and energy. The difficulty in applying these equations arises from the need to provide
detailed information of mass flux, velocity, and density in order to achieve reliable results.
Unfortunately, these data are not easily recorded using experimental techniques and most
modeling procedures are based on simplifying assumptions. The main assumptions that
have been made are considered in the homogeneous, separated, and flow pattern models.
The flow patten model is a more sophisticated approach to the two-phase flow where the

equations are solved within the framework of each flow pattern.

Various techniques are available for the study of two-phase flow patterns in diabatic
and adiabatic channels. At higher velocities, where the patterns become indistinct, the
flow patterns are directly observed using cinematography, X-radiography, or high-speed
video recording. Probes are also used as an indirect method to provide information to
deduce the flow patterns (Revellin et al., [2006; Hewitt, (1978). While the terminology used
to describe flow patterns can be subjective, the conventional pattern regimes are classified
as bubbly, slug, churn, annular, and inverted annular flows (Harirchian and Garimella
2009b; Revellin and Thomel, 2007a; |Kandlikar, 2006; |Chen and Garimella), 2006; Lee and
Mudawarj, 2005)).

Despite the present deficiencies in the understanding of various flow patterns and tran-
sitions from one pattern to another, there is a widely felt need for simple methods to
give some idea of the particular pattern likely to occur for a given set of local parame-
ters. One method of representing the various transitions is in the form of a flow pattern
map. Although, there are pattern maps available for macrochannels, it has been conclu-
sively shown that applying or extrapolating two-phase macroscale flow pattern maps to
microscale two-phase flows is unrealistic (Callizol 2010; |Ali, |2010). This is because surface

tension effects often play a stronger role in microchannels than in larger flow passages
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(Carey, 2008). Other reasons for observed deviation from classical “macro theories” are
surface roughness (Shen et al.; [2006; [Wu and Chenl, 2003; Kandlikar et al., 2003) and un-
accounted systematic errors due to the small dimensions of microchannels that make some
experimental parameters difficult to measure with sufficient accuracy (Morini, 2004). In
addition, the occurrence of flow instabilities reported in flow boiling in microchannels by
several authors complicate modeling efforts (Wu and Chengj, 2004; Kandlikar et al.| [2006b;
Lee et al., 2010)).

Flow regime maps at the microscale are also typically represented in graphs, where the
co-ordinates are the superficial phase velocities or generalized parameters containing these
velocities. The use of the superficial phase velocities in a flow pattern map restricts its
application to one particular situation, whereas the choice of more generalized parameters
may be preferable to represent the transitions. In fact, [Harirchian and Garimella (2010,
2012); Ong and Thome, (2011) proposed new pattern maps based on dimensionless parame-
ters instead of superficial phase velocities. Also, Felcar et al.| (2007 using the methodology
proposed by Taitel and Dukler| (1976) and incorporating surface tension effects (using the
Weber and Edtovos numbers) proposed an adiabatic flow regime map and transition mod-
els for channels varying between hydraulic diameters 1 and 5 mm. However, these method
cannot be generalized until more well characterized data become available but they are an
initial step towards a better understanding of the mechanisms acting on the flow pattern

transitions.

A better understanding of the two-phase flow patterns will help to formulate accu-
rate predictions of heat transfer and pressure drop which are fundamental parameters for
safe operation and optimal design of heat exchangers. In spite of intensive activity in
the recent years, heat transfer characteristics in small geometries still need clarification.
The difference between a micro and macro “approach” in single-phase flow has been com-
monly attributed to the fact that the physical mechanisms that are potentially dominant
in microchannels are less important in macrochannels, and vice versa. Some publications
agree that considering entrance effects, viscous energy dissipation, wall roughness, axial

heat conduction, and high measurement accuracy can lead to comparable results between
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micro and macroscale theories. However, there are also studies in microchannels based
on experimental and numerical simulation of the full Navier-Stokes and energy equations,
which demonstrate fairly good agreement with macro experimental data. These do not
appear to be conclusive evidence as to the applicability of macro theory when analyzing
microchannels. Unfortunately, the governing phenomena in microchannels are not well
understood and before predictions of flow and heat transfer rates can be made with con-
fidence, high-quality, reliable experimental data are needed to resolve discrepancies in the

literature.

Regarding the two-phase flow Heat Transfer Coefficient (HT'C'), there are a large num-
ber of correlations available in the literature on flow boiling of saturated liquids. Most of

these consider the contribution of two heat transfer mechanisms (nucleate and convective)

The mechanism of flow boiling heat transfer in microchannels has been a subject of
disagreement, due to the sometimes contradictory trends in various experimental data. The
trends in the experimental data in some publications are consistent with the predominance
of nucleate boiling and indicate that the heat transfer coefficient is a strong function of
the heat flux and increases with saturation pressure, being essentially independent of mass
flux (G) and vapor quality (z) as reported by Bao et al. (2000). In contrast, Lee and Lee
(2001)) showed that the HT'C increases with G and is sensitive to x which is consistent with
the convective boiling mechanisms observed in an annular flow regime. These observations
are both correct and simply refer to two different heat transfer regimes that can in fact
simultaneously occur in different parts of the same heated channel. Experimental data
supporting these observations can be found in [Lee and Lee (2001); Bertscha et al.| (2008|,
2009); Lee and Mudawar| (2005); Thome, (2004)), and Kandlikar| (2004).

In this experimental work, high-speed visualization covering a range of vapor quali-
ties with simultaneous heat transfer and pressure drop measurements are performed in
two different microchannel evaporators to provide important insights into flow boiling in
microchannels. The visualized flow patterns are expected to serve in developing of flow
pattern maps which can also provide valuable information for proper modeling assump-

tions. Also, the effects of the channel size, heat flux and mass flux on the boiling curve
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and heat transfer coefficient on flow boiling in microchannels are explored.

Macroscale flow boiling heat transfer may be decomposed into nucleate and convective
boiling contributions at the microscale. The extent of these two important mechanisms
remain unclear (Kakag et al.l 2009). Although, many experimental papers conclude that
nucleation boiling is dominant in their data because of the heat flux dependency, a heat
flux dependency does not prove that nucleate boiling is dominant or present (Jacobi et al.|
2002). Since, nucleate boiling requires only small superheat; it is the most convenient
flow regime for electronics cooling applications. If a microevaporator operates before the
critical heat flux (C'HF’) overheating in the microprocessor could be avoided. Therefore,

this research will be focused on the main flow regimes observed during the visualization

tests before CHF'.

2.4 Flow boiling heat transfer correlations

Typically nucleate boiling is dominant at low qualities while at moderate to high qualities
nucleate boiling is suppressed and film evaporation dominates. At intermediate qualities,
both nucleated boiling and film evaporation effects are important. Experimental HT'C's are
compared with correlations that use a superposition technique to account for the gradual

transition between nucleate and convective boiling.

Five empirical correlations for the saturated flow boiling HT'C' in macro and microchan-
nels were assessed. Table summarizes the references, operation range, and working fluid
for the flow boiling correlations which are briefly described below. These correlations were
chosen in this study because they have been used with some success to correlate flow boil-
ing heat transfer data over a finite range of flow conditions, are appropriated for water,
and their operation conditions are closer to the experiments in this work. It is important
to mention that it is difficult to find correlations that cover a similar range of operating

conditions in microchannels with water as the working fluid.
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2.4.1 Kandlikar model

The original correlation by |Kandlikar| (1990, 1991) on boiling HT'C' was developed using
a large data bank consisting over 10.000 data points with ten different fluids, including
water, refrigerants, and cryogenic fluids. The tube diameter ranged from 3 to 25 mm
considering all flow in the liquid phase in the turbulent region (Rer, > 3000). This
correlation was extended to mini and microchannels in the laminar and transition regions
by |[Kandlikar and Balasubramanian| (2004). The overall trend in HT'C' versus quality,
is that nucleate boiling contributions decrease with quality and the convective boiling
contribution increases with quality. Depending on the boiling number and the liquid to
vapor density ratio, the HT'C trends are seen to be increasing, decreasing or flat with an
increase in quality. Typically, in flow boiling data with small channels, the first two or
three experimental data points at low qualities always report considerably higher HT'C's.
This is believed to be due to the increased heat transfer rate associated with the ONB
(Kandlikar and Balasubramanian|, 2004). This effect is not predicted by this correlation in
addition to experimental results under sub-cooling conditions or the liquid deficient region

at high qualities generally observed above 0.7 or 0.8.

2.4.2 Lee and Mudawar model

This correlation was initially obtained for R134a as the working fluid but its applicability
to other fluids such as water was validated by correlating the R134a and water data with
the Martinelli parameter (X) and incorporating the boiling (Bo) and the Weber (Wep,)
numbers in the model of |Lee and Mudawar (2004). The experiments were performed in
a multiple channel microevaporator with a 231 yum and 713 pm channel width and depth
respectively. For better predictions, the model was divided into three quality ranges that
provided adequate coverage of both water and R134a databases. The low and high quality
regions are based only on the Martinelli parameter while the mid range includes the effects
of Bo and Wey, as well. The low viscosity of the R134a vapor leads to vapor Reynolds

numbers corresponding to turbulent flow at high heat flux conditions despite the small
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hydraulic diameter of the microchannel. Thus the single-phase vapor term in the high

quality correlation allows for both laminar or turbulent vapor flow.

2.4.3 Gungor and Winterton model

This correlation was developed with a data bank of over 4300 data points for water, re-
frigerants, and ethylene glycol. Mostly for saturated boiling in vertical and horizontal
tubes with internal diameters between 2.95 and 32 mm. The correlation assumes that
the two-phase flow HTC' is a combined effect between single-phase and pool boiling. An
enhancement factor E for the single-phase term and a suppression factor S for the pool
boiling term were incorporated into this model. The FE factor was correlated with the
vapor quality z and liquid to vapor density ratio (p;/p,). The original publication for this
model can be found in (Gungor and Winterton, [1986)) but a compact expression of this
correlation for saturated boiling presented in |Carey| (2008) was used to compare with the

experimental data in this thesis.

2.4.4 Lee and Garimella model

The correlation is a superposition-type model between convective and nucleate boiling heat
transfer mechanisms. The experiments were performed with water as the working fluid in
mini and microchannels with hydraulic diameters between 160 and 539um. Similar to Gun-
gor and Winterton’s model, |Lee et al.| (2008]) used enhancement and suppression factors for
the convective and nucleate boiling terms respectively. The postulate for this correlation is
that convective HT'C' is promoted as the flow is agitated by bubble nucleation and growth,
while nucleate boiling is suppressed owing to the reduced superheat in the near-wall re-
gion caused by the bulk fluid. The convective term of the model was represented as the
single-phase HT'C multiplied by the enhancement factor. Since, the flow in microchannels
is typically laminar, they proposed a correlation suitable for predicting laminar and ther-
mally developing HT'C' in rectangular microchannels. The enhancement and suppression

factors were obtained from regression analysis following the methodology proposed by |Liu
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and Garimella (2007). For the nucleated boiling HT'C' term, the correlation proposed by

\Gorenflo| (1993) for water was used.

2.4.5 Schrock and Grossman model

This correlation was developed using vertical upward flow boiling heat transfer data for
water in round tubes with internal diameters ranging from 2.9 to 10.8 mm. This is one
of the first models that correlates the two-phase flow HT'C' with the single-phase HT'C'
in addition to the use of the Boiling number and the Martinelli’s parameter to take into

account the effects of nucleate boiling and forced convection in the two-phase low HT'C'.

Details of this correlation can be found in the original publication (Schrock and Grossman|,

1950).
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Chapter 3

Experimental Facility

Single-phase experiments using water as the working fluid were performed to quantify heat
losses from the microchannel test apparatus to the surrounding ambient and to validate
the applicability of friction factor and heat transfer macro theories in microchannels. The
data could then be used as a starting condition for the two-phase flow experiments. The
chapter begins with a description of the experimental setup, followed by the data reduction

and an uncertainty analysis.

3.1 Experimental setup and procedures

3.1.1 Test rig

Schematic representation and photos of the experimental set-up are shown in Figures
respectively. The sketch shown in Figure (a) illustrates the main components and
fluid flow direction in the flow-regime-observation system. A steady flow of liquid to the
microchannel evaporator was supplied by a Harvard Apparatus PHD2000 syringe pump
for low flow rates (1 — 15 mi/min) or a Fluid-o-Tech DGD09A02 gear pump for higher
flow rates (15 — 63 mi/min). The channel was tested in a horizontal orientation and

given its small size, the driving force for buoyancy driven flow in a direction along the
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gravity vector was minimal in comparison to the other forces acting on the control volume;
therefore considered negligible. Surface tension, and evaporation momentum forces play
a dominant role at the microscale (Dang et al. [2011} [Kandlikar, 2010; Kandlikar et al.|
2006al).

Microscope
and high speed

Cold bath Microevaporator _
assembly unit [T Video camera
<R i (single channel)
eservoir ﬁ

Valve

Gear Flow meter
i (liquid)
P iy - Hot bath
L i
Valve Micro filter (@)

/ S S - Cover with sight glass
/ / . Gasket ™ Lateral outside insulation

Lateral inside insulation

Glass ': Interchangeable

microevaporator

Heater block

Silicone gasket (D)

Thermocouples

holes access Side insulation

Figure 3.1: (a): main components and fluid flow direction, (b): microevaporator assembly

unit, (c): sight glass section view
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Four different mass fluxes (G =~ 350, 700, 1000, and 1300kg/m?s) were evaluated during
these experiments with ultra pure water as the working fluid. The outlet pressure was kept
constant at atmospheric pressure, and the inlet pressure changed with the mass and heat
flux. A correlation for the saturation temperature as a function of the pressure was obtained
using water vapor tables to take into account the pressure drop along the channel. Since
the inlet pressure was allowed to float and the inlet temperature was constant, the sub-
cooling was different for each test. However in these experiments, the average sub-cooling
was almost the same, ranging between 50.7 and 54.2°C'. Ultra pure water was used as the
working fluid. The water was boiled in the experimental facility before data were collected
and possible air or gases dissolved in the water were removed in a settling reservoir open to
the ambient. Any possible re-entrainment of air in the water can cause formation of bubbles
before saturation temperature and can be confused with the ON B. In most of the cases
the first bubble appeared near the saturation temperature. Cases where the first bubble
formed below the saturation temperature were easily identified because bubbles formed
due to trapped gases do not appear in the same location after being moved downstream
by the fluid while a bubble formed at the wall by boiling re-appears in the same cavity. A
Haake F3 circulating bath was used to maintain a temperature of 50 °C' at the inlet of the
evaporator. The liquid flow rate to the test section was monitored by the electronic display
of the syringe pump but also measured with a McMillan liquid microturbine Flo-sensor
model 104. Prior to running any test, the microchannel was cleaned with liquid soldering
flux and then thoroughly rinsed before filling the system with the test liquid. The soldering
flux removes any layer of oxide formed at the channel surface. A miniature high-efficiency
inline filter was used to remove from 93 to 99.99 % of the foreign particles at a 25 micron

rating.

The convective boiling process was studied using a special microevaporator assembly
unit as shown in Figure [3.1(b), with detailed drawings shown in Appendix [Bl The unit
included a top cover plate with sight glass window which allowed flow pattern visualization,
an interchangeable microevaporator, heater block, cartridge heater, and thermal insulation.

The sight glass was fabricated with a 20 x 5mm and 1.2mm thick gold seal glass microscope
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slide and sealed with a Bisco HT-6240 transparent silicone gasket (thickness 0.020”), and
an O-ring as shown in Figure (C) The microevaporator was machined from a 44 x 10 x
12.7 mm block of oxygen free copper. The microevaporator consisted of a single straight
channel with rectangular cross sectional profile to avoid the non-uniform flow distribution
observed with multiple channels microevaporators. In order to evaluate the effect of the
channel size on flow patterns, two different microevaporators with a channel depth, width
and length of 198 x 241 x 21900 and 378 x 471 x 21900 um were experimentally evaluated.
These channel dimensions were chosen in order to fall into the range of classification for
microchannel and minichannel suggested by |Kandlikar et al. (2006al). Also, manufacturing

smaller channels in copper is more challenging with micromilling technology.

The microevaporator was heated along its lower boundary using a 400 watt Watlow
cartridge heater embedded in the oxygen free copper heater block. The heat flow pro-
vided to the microevaporator was controlled with the supplied power (e.g. controlling the
voltage) to the cartridge heater ranging between 5 and 130 watts until steady state was
reached or when the maximum temperature reached 180°C' to avoid damage to the silicone
gaskets. This heater block provides a virtually uniform channel wall temperature along
the length of the channel. Heat was conducted from the heater along the heater block to
the microevaporator where it was transferred to the fluid in the microchannel. The single
channel evaporator and the heater block were completely enclosed in insulation so that
heat leakage to the surroundings was minimized. Polyetheretherketone known as “PEEK”
was used as insulation material and two gaskets fabricated with Bisco HT6135 solid sili-
cone (thickness 0.015”) were used in the side insulation blocks to take into account thermal
expansion. Additionally, cavities in the insulation blocks were machined in order to trap

air and minimize heat losses.

A Fisher Scientific ice point cell RC-140 was used as an external reference junction for
more accurate temperature readings (down to 0.2 °C'). Nine T-type thermocouples were
embedded in the evaporator and heater block along the middle plane of the evaporator to

determine the temperature gradient and channel surface temperature as shown schemat-

ically in Figure , with detailed drawings shown in Appendix [B| (Figures and [B.7)).
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T-Type thermocouples and Omega pressure sensors PX481A-060G5V were also located at
the inlet and outlet of the microchannel to measure the local fluid temperature and pressure
drop along the microchannel with an accuracy of 0.2% FS. For the lowest pressure drops
in the experiments (below &~ 6.3 kPa), an Omega differential pressure sensor PX26-005GV
was used to decrease uncertainty (accuracy 1% FS). The measured temperature gradient

was used to calculate the surface temperature at the channel wall by extrapolation.

Header Channel

M\ N

) Use for channel
Thermocouple tip a surface

temperature
Interchangeable o —

microevaporator [ > i
— Used for
Heater block - 0‘7/ temperature
e [ gradient

ol
AL

Thermocouple
hole

Figure 3.4: Schematic thermocouple locations in evaporator and heater block (dimensions

are shown in Appendix [C] Figure [C.2)

The heat supplied to the microchannel was estimated based on the heater power
(voltagex current) minus the heat losses. During steady state conditions, 50 experimental
data points for each measured parameter were recorded using a Keithley DAQ system with
a 7700-20 channels multiplex module, and ExceLINX software. Simultaneously, the flow
patterns were also recorded using a high-speed digital video camera (Photron FastCam
S1A) installed in a Meiji-EZ-13 stereo microscope. The high-speed videos were recorded

at 128 x 60 pixels and between 2,000 and 30,000 frames per second. Some images recorded
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at higher frame rates were post-processed using Matlab image processing tools to enhance
the quality. Finally, the fluid leaving the evaporator was condensed using a spiral copper
tube immersed into a Haake A81 circulating bath at 24 °C' and returned to a reservoir at

atmospheric pressure.

3.1.2 Microchannels

CAD model
(Solid Works)

ME prototype

CAM model
{Mastercam)

Micro-machining

Figure 3.5: Microchannel design and manufacturing process
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Two microevaporators were used in the experimental investigations. Figure [3.5{shows the
design and manufacturing process for the microevaporators. The mini and microchannel
were designed and manufactured in-house using CAD (Solid Works), CAM (MasterCam)
software, and the “G-code” generated in MasterCam was transferred to a micro-milling

machine for the cutting process.

The microevaporator prototype (ME prototype as shown in Figure consists of a cir-
cular header (diameter = 5mm x depth = channel depth) at the inlet and outlet connected
by a channel approximately 19 mm in length. The headers provide an equalization of fluid
pressure at the inlet and exit of the channel (see Appendix for headers dimensions). The
appropriate location of the thermocouples in the microevaporator and in the heater block

were estimated using a 3D steady state finite element model, where results are shown in

Appendix [C]

Table 3.1: Channel dimensions

Channel geometry L,mm b, gm a, um R, um

D

2 5 |« W,

§§ +|a li) <t 219 198 241 0.65
o

f__z =3 m—] 3 I ]

53

=

& é/i 219 378 471 0.54

£27 |0

378x471
W=12,7 mm

Channel dimensions and surface roughness (RUED of the microevaporators are shown
in Table [3.1. The channel dimensions were measured using a Mitutoyo SJ-400 surface
roughness tester and confirmed with an Olympus U-PMTVC optical microscope (with a
Photometrics CoolSNAP CCD camera, and image Pro Plus software), both methods differ
by less than 2 % in the channel size measurements. A typical channel width registered

by both methods is shown in Figure [3.6] For this particular location in the channel, the

IDefined as the arithmetical mean of the absolute values of the profile deviations from the mean line.
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surface roughness tester registered a channel width of 242 pm which is comparable with
the 238um observed with the microscope (see Appendix@ for more channel size registered

data).

Profile=R - Section=[1]

@ l l

(e} ~ lf{ | |
a8 d o
~ 55 1 1
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D2: 238 um

Figure 3.6: Channel width measurement techniques, top: with surface roughness profile,

bottom: with electronic microscope
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3.2 Data reduction

3.2.1 Single-phase flow
Friction factor

Measuring the local pressure along the flow is difficult in microchannels and normally the
experimental pressure drop represents the combined effect of the losses in the bends, en-
trance and exit losses, developing region effects and the core frictional losses. The schematic

representation of the pressure drop measurements is shown in Figure [3.7]
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A
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® ®
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. i.." SN R R '.'é
T i ’{' ....................................................... |. ..... - —'——T
Expansion 1 Padinmigy ghars Contraction 2
Contraction 1-f==" &t TS e [ Expansion 2
Developing Frictional  Evaporator
region losses

Figure 3.7: Schematic representation for pressure drop measurements in microevaporator

(location of inlet pressure sensor shown in Appendix [B] Figure B.3)

The pressure drop for bends, fluid contraction and expansion losses (usually called
minor losses, Ap,,in) was obtained from [Phillips| (1990) and shown in Equation . The
pressure drop for the cover, first expansion and second contraction (Apeoyer, Expansion 1,
and Contraction 2, in Figure 3.6|) were between 0.4 and 4.8 % of the minor losses, therefore

they were neglected.
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2

A 2
5 (—) 2Ky + K.+ K.

T (3.1)

In Equation A and Aj, are the channel and header cross sectional area respectively.
Ky is the loss coefficient for the bends, K. and K, respectively represent the contraction
and expansion loss coefficients due to area changes. Phillips (1990) recommended K to be
approximately 1.2 for a 90 degree and a contraction and expansion loss coefficient K. = 0.8
@ Re <2000, K. = 0.5 @ Re > 2000 and K. = 0.9. Finally, the experimental pressure
drop in the channel after correction can be calculated from the experimental pressure

measured minus the minor losses.

Apezp = Apmeasured - Apmzn (32)

The experimental single-phase friction factor f.,,, was calculated using the experimen-
tal channel frictional pressure drop Ap, measured across the whole length of the test section

L, in the Darcy-Weisbach equation:

dp,
= APogy—t— .
fexp Pexp 2Lpu2 (3 3)

where, the hydraulic diameter is defined as d, = 4A/P (A: channel cross sectional area,
P: channel wetted perimeter). The fluid properties were evaluated at the arithmetic mean

temperature between the inlet and outlet (T3, + Thut) /2.

The experimental friction factor obtained from the above equation was compared with
the friction factor f, calculated for laminar fully developed flow proposed by |Shah and
London| (1978)) (Equation and the Blasius equation for turbulent flow (Equation [3.5).

f Re = 24(1 — 1.3553a + 1.9467a” — 1.7012a° + 0.9564a* — 0.2537a°) (3.4)

In Equation [3.4] the channel aspect ratio a = b/a if b < a, or a = a/b if b > a.
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f=0.0791Re™ "% (3.5)

To account for the developing region, the microchannel pressure drop equation was

presented in terms of an apparent friction factor in the following form:

2 fuppLpu®  2fLpu? 2
_ Japp Lpu _ fLpu —i—K& (3.6)

A
P dy d, 2

K represents the Hagenbach’s factor for rectangular channels obtained by Steinke and

Kandlikar (2006).

K = 0.6796 + 1.2197a + 3.3089a” — 9.5921a + 8.9089a* — 2.99590° (3.7)

Heat transfer coefficient

For single-phase flow, the average heat transfer coefficient is traditionally expressed in its
dimensionless form by means of the average Nusselt number, Nu, which may be defined as

the ratio of convective to conductive heat transfer across the boundary with the expression:
Nu = 2o (3.8)

Insulated Tout

e —————————
o i
Lot -
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Depth:b [ .~ ™ < Heated

\/ surfaces

Width: a

Figure 3.8: Control volume and boundary conditions for the channel
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The channel was heated along three surfaces and insulated on the top surface as shown
Figure 3.8 Since the measurements of the experimental surface temperature along the
channel indicated isothermal boundary condition, the average heat transfer coefficient h

was calculated as:

7 Qfluid
h = AAT,, (3.9)

where A, and ATy, are the heat transfer surface area and the log mean temperature

difference respectively as shown in Equations and [3.11}]

Ay = (a+2b)L (3.10)
AT'ou - AiT’m
i (37)

AT, and AT}, in Equation|3.11|are expressed in terms of the channel surface temperature

T, and the inlet and outlet fluid temperature as:

AfTout = Ts - Tout and Aﬂn = Ts - En (312)

The heat absorbed by the fluid @ f;,:4 can be obtained from:

Qfluid = mcp(Tout - T’z ) (313)

Substituting Equation and Equation [3.13] into Equation [.9] the heat transfer

coefficient can be expressed as:

7 ATout me
h=—In < AT, > A (3.14)

Fluid properties were calculated at the mean fluid temperature, (Tpy; + T3p)/2 using

the correlations shown in Appendix [E]

49



3.2.2 Two-phase flow

An energy balance can be written for the microevaporator assembly unit as:

Qtotal = Qfluid + Qloss (315)

in which, Qar is the total heat supplied by the cartridge heater, ) f144 is the heat removed
by the fluid, and @)}, is the heat loss. The total heat was obtained directly as Q;ota; = VI
(V, is the applied voltage and I, is the current in the heater). The current in the heater
was estimated measuring the voltage through a calibrated 0.01 ohm shunt resistance I =
Vinunt/R. The heat loss to the ambient from the test section was estimated from the
difference between the total heat and the sensible heat gain by the fluid under single-phase

condition as:

Qloss - Qtotal - mcp(Tf,out - Tf,zn) (316)

The previous equation is only valid for single-phase experiments. However, to extend
its applicability for two-phase flow, a similar methodology proposed by |Liu and Garimella
(2007) was used. The heat loss obtained from Equation was correlated with the
average channel wall temperature. Therefore, a linear correlation of the heat loss as a
function of channel wall temperature was obtained [Qjoss(7%) = mTy, + b]. Then, the heat
removed by the fluid for single and two-phase flow experiments can be estimated from
Equation [3.17] Values of m and b values for the Qs correlations associated with each

mass flux and channel size tested in this work are shown in Appendix [F]

Qfluid(Tw> = Qtotal - Qloss(Tw) (317)
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Figure 3.9: Heat removed by fluid for 378 x 471 pm microevaporator at G = 1373 kg/m?s

Figure [3.9, shows the variation of the heat transfer by conduction through the copper

heater block (Qcond), the fluid removed by the fluid as sensible heat (Q fuia =

e, AT),

and the heat removed by the fluid @ f1,:4(77) with respect to the total heat supplied by the
heater (Qoa) for the channel size 378 x 471 um at G = 1373 kg/m?s. From Figure ,

it can be clearly seen that Q f1,a(1,) follows a different slope in the two-phase flow region

which can be attributed to the high heat transfer coefficient associated with latent heat.
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Figure 3.10: Measurement of the gradient of temperature in microevaporator and heater

block

The heat by conduction was calculated with the thermal conductivity of the oxygen free
copper and the gradient of temperature along the the heater block and the interchangeable
evaporator as shown in Figure . Note that the heat transfer by conduction (Qcona, in
Figure was very similar to the total heat, showing a linear behavior which indicates

that most of the losses are by conduction.

The local two-phase flow heat transfer coefficient for the microevaporator was calculated

from:

G

h=—"
Tw_Tsat

(3.18)

where T, is the local channel wall temperature (measured by extrapolation), Ty, is the
local saturation temperature which decreases in the flow direction due to changes in pres-
sure along the channel. Therefore, a correlation for the local saturation temperature as
a function of the pressure was developed and a linear pressure drop from the inlet to the

exit of the channel was assumed. Fluid properties such as thermal conductivity, specific
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heat, density, dynamic viscosity, saturation temperature, enthalpy, and latent heat of va-

porization were corrected for temperature and the correlations can be found in Appendix

[El

The thermal conductivity of the oxygen free copper was experimentally measured in
accordance with ASTM D5470. The experiments were performed in a vacuum chamber
to minimize heat losses by convection. Figure [3.11] shows the test rig for measurement of
thermal conductivity of oxygen free copper. Since this method requires measurement of the
gradient of temperature along the sample, thermocouples were located in the isothermal
planes which were identified through finite element simulation (see Appendix |C| for finite
element model, and the experimental results for the thermal conductivity). Since negligible
effects on temperature in the range of study were observed, and an average of 384 W/mK
was used for the thermal conductivity. The fin effect in the microevaporator was neglected

since the channel wall thickness was much larger than the channel depth.
The wall heat flux q,, is defined as:
Qfluid
w = ——— 3.19
= a+2)L (3.19)
where a, b, and L are the channel width, depth, and length respectively.

The exit vapor quality x, was calculated from an energy balance in the channel as:

1 Qyuia
r=-— — —
hfg m

cp(Tsat — Tin) (3.20)
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3.3 Uncertainty analysis

The overall uncertainty can be obtained by adding uncertainties of type A and B. Type
A (also called random uncertainty or precision error) is statistical in nature and can be
estimated by the standard deviation, (o) of the mean value for a quantity which has been
measured a sufficiently large number of times (usually measured more than 20 times). Type
B (also called systematic uncertainty or bias error) is however, not statistical in nature and
most of the time is constant and can be estimated from previously available measurement
data, experience or general knowledge of the instruments, manufacturer’s specifications,
data provided in calibration and other reports, and uncertainties assigned to reference data

taken from handbooks.

U = [(Type A)* + (T'ype B)?| 2 (3.21)

The various sources of error of type B are independent and can be combined using the
root-sum-square (RSS) method to calculate the total uncertainty due to type B. According
to BIPM/ISO standards, the overall uncertainty U of a quantity due to the two types of
uncertainties (i.e. type A and B) is thus determined by RSS method as shown in Equation

3211

Random uncertainty was typically neglected for most of the data given that it would
only affect the overall uncertainty by less than 1%. In some instances, such as two-phase
flow with pressure drops in excess of 24 kPa, where oscillation are significant, random
uncertainty was considered. In these cases precision error increased from 1 to 44 % and

the bias error decreased from 3.4 to 0.7 %

The uncertainty type B for the measured and calculated variables was estimated based
on the method described by |Coleman and Steele (1989). In this method is assumed that a

quantity R, it is determined from a set of measured values, X ;:

R = R(X1, X2, X3, ..., Xx) (3.22)
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where each measured value X; has an associated uncertainty represented by the notation

0.X, the effect of the uncertainty in X; on the result R is calculated by:

5By OR

= —0X; 2
J ané J (3 3)

where 0 Ry, refers to the uncertainty in R as a result of the uncertainty in the X; mea-

surement. Then the uncertainty in the result is given in general form as:

1/2
OR 2 OR 2 OR
SR = + { (8—X15X1> + (a—XQ(SXg) + o+ (a—Xj(SXj)} (3.24)

Detailed calculation of the uncertainty on the measured and calculated variables is
shown in Appendix [A] and a summary of the uncertainties for the experimental data in

this thesis is shown in Table [3.2

In these experiments, all measured variables were registered in a DAQ through sensors
that produce a voltage signal proportional to the measured variable. Although, the DAQ
has very low uncertainty in the reading of voltage (£0.4 %), and each transducer has
low uncertainty (< 5 %), the uncertainties of some calculated variables such heat transfer
coefficient and friction factor reached values up to 17.7 and 29.8 % respectively. It is
important to mention that these high uncertainties are only present in a small portion of
the measurement range. Moreover, high values of uncertainties in calculated variables are
normally presented in micro and microchannels due to the error propagation (addition of
each individual error as shown in Equation . This is one of the reasons that making
measurements in microchannels is very challenging. As a reference, uncertainties ranging
between 17 and 25 % were also reported by |Callizo| (2010); Megahed| (2010]) in round pipes

and rectangular channels with hydraulic diameters between 268 and 640 um.
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Table 3.2: Uncertainties for experimental data (*includes precision and bias errors. The

high uncertainty of ~ 44 % is only for the two highest heat fluxes at each mass flux tested).

Variable Range Uncertainty, %
Voltage 1-25 mV +04
5-100 V negligeble
Current 1-25A * (0.6-0.1)
Temperature 24-180, °C +(0.8-0.1)
Pressure single-phase flow 6.3-237 kPa +(13.1-0.3)
Pressure two-phase flow 6.3-24 kPa +(13.1-3.4)
24-113 kPa + (3.4-44.0)*
Flow rate 1-15 ml/min +0.4
15-64 ml/min 2.7
Channel dimensions (bxa)
198x241 um 198-241 um +4.7
378x471 um 378-471 um +2.8
Reynolds number, R,
channel (198x241 xm) 119-863 +3.2
channel (378x471 um) 280-1725 +1.9
Mass flux, G
channel (198x241 xm) 340-1297 kg/m*s
channel (378x471 um) 364-1373 kg/m %s *
Heat flux (single-phase) , g,
channel (198x241 um) 50-2900 kW/m? +90.1
channel (378x471 um) 112-3720 kW/m*? +8.6
Heat flux (two-phase) , g,
channel (198x241 xm) 63-2700 kW/m? + (11.6-3.3)
channel (378x471 um) 55-4300 kW/m? +(2.9-1.1)
Heat transfer coefficient, h,
channel (198x241 um) 40-713 kW/m? K +(17.7-3.4)
channel (378x471 xm) 89-960 kW/m %K + (13.8-1.4)
Single-phase Nusselt number, Nu
channel (198x241 um) 47.7-4.6 +(28.8-5.5)
Single-phase friction factor, f
channel (198x241 um) 0.011-0.444 *(29.8-16.3)
Vapor quality, x
channel (198x241 u#m) 0.04-0.49
channel (378x471 um) 0.04-0.54 *(250-9.0)
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Chapter 4

Single-Phase Flow and Heat Transfer

Single-phase heat transfer and pressure drop experiments were performed prior to the
boiling tests mainly to check the energy balance, validate measurement equipment, exper-
imental procedures and the applicability of conventional macro theory for friction factor
and Nusselt number in rectangular channels with a hydraulic diameter of approximately
200 um. The heat loss in the sample was evaluated in the insulated microchannel during
single-phase, based on the heat provided by a cartridge heater (Qoe;) and the heat re-
moved by the fluid (Qfuiq). After, the heat loss was properly quantified (as described in
section , the friction factor and Nusselt number were experimentally measured and

compared with traditional macro theories.
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4.1 Single-phase friction factor
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Figure 4.1: Experimental friction factor for single-phase adiabatic and diabatic rectangular

channel with d; ~200 um

Single-phase pressure drop experiments have been performed in the smallest channel (198 x
241 pm) size during adiabatic and diabatic conditions (heat input between 0 and 50 W).
The experimental single-phase friction factor vs Reynolds number for adiabatic and dia-
batic conditions is shown in Figure [£.1 Only the uncertainty on the friction factor for
the adiabatic case is shown in this figure for easy reading. Clearly, the friction factor for
diabatic and adiabatic cases are comparable after Re > 900. For Re < 900, the uncer-
tainty in the friction factor and Reynolds number are higher, and both cases (diabatic and

adiabatic) are also comparable within the uncertainties of the measurements.

The calculation of the friction factor using the Darcy-Weisbach (Eq. requires the
local pressure drop along the microchannel which is difficult to measure experimentally.

Normally, the experimental pressure drop in microchannels includes the effects of bends,
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and fluid contraction and expansion as described in section [3.2.1] as the minor losses.
Since the minor losses increase with the square of the velocity, it is possible to find an
appreciable difference between the measured pressure drop and the pressure drop along

the microchannel as the Reynolds number increases.
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Figure 4.2: Experimental friction factor with and without minor losses correction

The experimental friction factor calculated with and without minor losses as a function
of the Reynolds number is shown in Figure|4.2l The results of the friction factor with minor
losses correction are tabulated in Appendix [G] section The friction factor with minor
losses correction is smaller than the friction factor without correction for Re > 500. This is
attributed to the fact that minor losses increase with the velocity. Therefore, minor losses
have a strong effect on the friction factor as the Reynolds number increases. The minor
losses were estimated between 1 and 30 % of the measured pressure drop. Therefore, in
these experiments, the measure pressure drop was corrected for the minor losses in order
to estimate the experimental pressure drop along the channel. Once the pressure drop

along the microchannel was estimated, the theoretical and experimental friction factors
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were compared. It is important to mention that in the calculation of friction factor, the
density of the fluid was temperature dependent and estimated based on the correlation

shown in Appendix [E]
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Figure 4.3: Comparison of experimental friction factor with traditional correlations for

macrochannels

Figure shows the variation of the experimental friction factor (after minor losses
correction) with respect to the Reynolds number. The figure also shows the friction factors
obtained for laminar fully developed flow (Equation , laminar developing flow (Muzy-
chka and M.M.Yovanovich, 2010), and the Blasius equation for fully developed turbulent
flow (Equation in conventional macro theory. The experimental data show good agree-
ment with the laminar fully developed theory for Re<500. For Re>500 the entrance effects
may cause increases in pressure drop and the laminar fully developed macro theory cannot
predict the experimental data. A transition between fully developed and developing flow is
observed at 500< Re<1600. Considering the uncertainty in the friction factor, both laminar

developing or turbulent theory can predict the experimental data for 1600<Re<2600.
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As shown in Figure the experimental data deviated from the laminar fully devel-
oped theory at Re =~ 500. To confirm if this deviation is directly related to the developing
entrance length, the effects of Reynolds number, hydraulic diameter, and channel aspect
ratio on the entrance length in rectangular microchannels were investigated in microchan-
nels. Details of this study using numerical methods were published in the paper
and a brief description of the methodology and results are described as follows:

Laminar flow in a rectangular channel was modeled using incompressible laminar Navier-
Stokes equations using ANSYS CFX 12.1. The simulations were performed for a range of
Reynolds numbers from 0.5 to 200. Square channels 100, 200, 400, and 500 pm wide and
rectangular mini and microchannels of comparable dimensions with channel aspect ratios
(v = b/a) between 1 and 5 were investigated. The fluid properties were assumed to be

constant, neglecting viscous dissipation, which was shown to be a valid assumption for

water in microchannels with d;, > 100 um (Celata et al., 2006; Morini, |2005; Koo and Kle-|

instreuer} [2004). The simulations were compared with available experimental data and new

correlations for estimating the entrance length in mini and microchannels were proposed.

Figure 4.4: Computational model
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The computational domain is depicted in Figure No-slip boundary conditions were
applied at the top (y = b/2), back (z = 0), and bottom (y = —b/2) boundary of the domain
and the symmetry condition was applied at the front boundary, corresponding to the
channel center plane (z = a/2). At the inlet, a uniform velocity profile, (u, v, w) = (U,, 0, 0)
was prescribed, and zero static pressure was set at the outlet. A structured mesh was
employed, with mesh refinement near the walls. Both non-uniform and uniform mesh

configurations in the streamwise direction were considered.

Traditionally the hydrodynamic entrance length is defined as the length from the inlet
of a channel to a location where the velocity profile has attained 99 % of the fully developed
velocity profile (Kandlikar et al., 2006al). In the present study, this was approximated as
the location where the centerline velocity (u.) of a developing flow reaches 99 % of the

centerline velocity expected in the fully developed profile (ugp).

IX.I>O+I>DQ

Figure 4.5: Streamwise normalized velocity profiles from simulations for microchannel

(a = b =100 pm, Re = 50)
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Figure depicts the evolution of streamwise velocity profiles for a channel 100x100
pum and Re = 50 obtained from the numerical simulations. The velocity profiles and
position were normalized with inlet velocity U, and the channel side dimensions (e.g.
u/U,, y/b, z/a). Figure illustrates how the velocity profiles gradually approached
the fully developed profile as the flow develops along the length of the microchannel.
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Figure 4.6: Centerline velocity ratio vs. dimensionless position for microchannel a = b =

100 pm, 0.5 < Re < 200

Figure shows the variation of centerline velocity (u./upp) with the downstream
position (x/dy) for the normalized velocities profiles at different Reynolds numbers for the
channel 100100 pm. The dashed line corresponds to u./upp = 0.99. For example, for

Re = 50 the normalized axial position (z/d}) corresponds to a normalized entrance length

(Lo/dy, = 4.25).
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Figure 4.7: Normalized entrance length L./d; from experimental data reported by |Ahmad
and Hassan| (2006) and from numerical simulation by |Galvis et al.| (2012) at b/a =1

Further simulations at different channel sizes (e.g. 200x200, 400x400, and 500x500
pum) permitted the variation of the entrance length as the channel size was increased. Figure
shows the variation of the normalized entrance length L. /d;, with the Reynolds number
using the numerical results obtained in this study, the experimental data from |Ahmad
and Hassan| (2006), and the well known correlation for macrochannels L./d, = 0.06Re
(Schlichting [1979). Considering experimental uncertainty in micro PIV, there is excellent
agreement between experimental and numerical results for channel sizes of 100 and 200
pm. Experimental data for these two channel sizes and the numerical results for all channel
sizes investigated, i.e., 100, 200, 400, and 500 pum, tightly follow a similar trend line (e.g.
relative difference between 1.8 and 20 %E[). However, the experimental data set pertaining

to a channel size of 500 um deviates from the general trend at lower Re. Since no slip

!The highest relative difference was for the lowest Reynolds number. Higher uncertainties in mi-

crochannels are typical, as mentioned in section
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effect is expected for all the channel sizes investigated, this deviation may be attributed to
uncertainty in experimental measurements. /Ahmad and Hassan (2006]) do not provide any
explanation for the observed deviation of the data pertaining to the larger channel (500

pm) from other results obtained in their study.

The results show that the dimensionless entrance length changes nonlinearly with
Reynolds number for Re < 50, while exhibiting a nearly linear dependence within 50 <
Re < 1000. The observed trends were found to be independent of the microchannel size

for b/a = 1.

Table 4.1: Correlations for dimensionless entrance length for mini and microchannels

(100<dp<500; 0.5<Re< 2000, Galvis et al] (2012))

:—: =ﬁ+C3Re Coefficients
bla C, C, C,
1.00 0.740 0.090 0.0889
1.25 0.715 0.115 0.0825
2.50 1.000 0.098 0.9890
5.00 1.471 0.034 0.0818

In order to evaluate the effect of the channel aspect ratio on the entrance length,
simulations were performed for channel aspect ratios 1 < b/a < 5 and 0.5 < Re < 200.
The results obtained from the simulations and the proposed correlations are shown in Table
. It was also verified that the estimates made for L./d; based on streamwise velocity
profiles measured in either xy, or xz planes were the same. The results show that there
is no significant effect of the channel aspect ratio on the dimensionless entrance length
for Re > 50. However, for Re < 50, the dimensionless entrance length increases as the
channel aspect ratio increases for a given Reynolds number. Since, for Re > 50, there is
essentially linear dependence of the dimensionless entrance length on Reynolds number,
the correlation can be extrapolated to higher Reynolds numbers within the laminar flow

regime. Similarly, a linear dependence of the L./d; on Re for 50 < Re < 1000 was also
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observed by Renksizbulut and Niazmand| (2006) and Wiginton and Dalton| (1970). Thus,
the correlations in Table can be applied to rectangular microchannels with 1 < b/a <5

and for 0.5 < Re within the laminar flow regime.

It was possible to identify that 50 % of the channel length was in developing flow
conditions at Re = 500 by using the appropriate coefficients from Table for the channel
size 198 x 241 um (b/a ~ 0.8). As the Reynolds number increases from 500 to 1600, the
percentage of the developing length increases from 50 to 100 %. Therefore, the friction
factor obtained from experiments will clearly follow a different path from that of the
laminar fully developed theory in the range of Reynolds number between 500 < Re < 1600

as shown in Figure [4.3]

In summary, macro theory predicts the friction factor but entrance effects and minor
losses must be considered in the calculations. The deviation from the fully developed lam-
inar flow in this channel was observed at Re ~ 500, and the developing and turbulent flow
macroscale correlations were able to predict the experimental friction factor for Reynolds

number between 1600 and 2600.

4.2 Single-phase heat transfer

It was reported by (Callizo (2010]) and Ali (2010)) that the Nusselt number in micro cylinders
(0.6 < D < 1.7mm) can be properly obtained using single-phase classical macro theory.
Their experiential work was for refrigerants in laminar fully developed flow and turbulent
conditions. Different to the work reported by [Callizo| (2010) and Ali (2010), in this thesis,
water was used as the working fluid and the experiments were performed in a rectangular
channel with smaller hydraulic diameter (d, = 217um). Also, the applicability of classical

macro theory to microchannels was studied under developing flow conditions.
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Figure 4.8: Experimental and theoretical average Nusselt number vs Reynolds number for

rectangular channel (d, = 217 um, b/a = 0.822)

In Figure [4.8] the experimental average heat transfer coefficient, expressed in the form
of dimensionless Nusselt number was compared with correlations for fully developed flow
(Kakag et al., |1987) and turbulent flow (Gneilinski, [1976) for conventional macro theory.
For fully developed flow conditions, the Nusselt number is constant (3.00 isothermal or
3.65 isoflux for a channel aspect ratio b/a = 0.822) or increases with Reynolds number
for turbulent flow regime as shown in Figure It is evident from Figure that the
experimental Nusselt number differs from the fully developed and turbulent cases. Since,
turbulent flow is not expected for these experimental conditions, and the experimental
data are not indicating a fully developed flow condition (Nu is not constant), the experi-
mental data may correspond to a developing flow condition. Therefore, the experimental
data should be compared with developing flow correlations instead of fully developed or

turbulent flow models.

The Nusselt number under developing flow conditions or entry length problem is typical

plotted against the Graetz number G, = (d,/x) Re Pr instead of the Reynolds number.
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The entry length problem corresponds to the case for which the temperature and velocity
profiles develop simultaneously. In a Nu vs G, plot, the Nusselt number is infinity at
the inlet of the channel # = 0 and decays to an asymptotic (fully developed) value with
increasing x. When plotted against the Graetz number, the Nusselt number is independent
of the Prandtl number if the velocity profile is independent of the fluid viscosity. In
contrast, for the combined entry length problem or simultaneously developing flow, the
results depend on the manner in which the velocity distribution develops, which is highly
sensitive to the fluid properties. Hence, the heat transfer results depend on the Prandtl
number for the combined entry length case.
10° ,
o Experimental
--------------- Fully developed (isothermal), Kakac et al. (1987)

Fully developed (isoflux), Kakac et al. (1987)
— Simultaneously developing flow, Kakac et al. (1987)
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Figure 4.9: Experimental results for the average Nusselt number for developing flow con-

ditions vs Graetz number

Figure [4.9 shows the experimental average Nusselt number against the square-root of
the reciprocal of the Graetz number. The results for single-phase Nusselt number are
tabulated in Appendix [G] section [G.2l The experimental Nusselt numbers correspond
to Reynolds numbers between 190 and 2660 and Prandtl numbers between 3.8 and 5.
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The experimental average Nusselt number approaches the fully developed condition as
the Graetz number increases. Typically, the fully developed conditions are reached for
VGz~1 ~ 0.22 in laminar flow in a circular tube, for this microchannel the fully developed
condition seems to be reached for vGz=1 ~ 0.30.

For the channel size tested it was not possible to decrease the Reynolds number below
Re < 189 or have the term vGz~! in Figure below 0.34. This can be achieved with
volumetric flow rates lower than 1 ml/min but at this condition, just a small amount
of heatP] added to the water will produce boiling inside the microchannel which is not
desirable for the purpose of this analysis. Based on these experimental results, conventional
macro theory for heat transfer is applicable at microscale level for microchannels with
hydraulic diameters dj, > 217 pm. It is important to mention that in this work, developing
flow conditions in microchannels were experimentally evaluated. According to the best
knowledge of the author this kind of study in microchannels is mostly considered using

numerical simulations.

In summary, the experimental results on microchannel single-phase liquid flow and heat
transfer characteristics obtained in this study confirm that, including the entrance effects,
conventional macroscale theory for laminar flow is applicable for water as the working fluid
through rectangular microchannel with hydraulic diameters as small as 200 pm. This ob-

servation is meaningful considering the large scatter in the results existing in the literature.

The single-phase investigation also permitted a proper identification of the heat losses
to the environment which was used for the estimation of the heat removed by the microe-
vaporator during the two-phase flow experiments. It would be interesting for future work
to evaluate the effects of different working fluids on the Nusselt number and friction factor
and modify the current test rig in order to allow a larger range of Graetz number that

includes fully developed flow conditions (e.g. longer channel).

22.5 W will produce boiling inside the microchannel if the volumetric flow rate is ~0.5 ml/min.

Therefore, it is not possible to collect substantial data for single-phase at low flow rates.
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Chapter 5

Two-phase Flow Visualization

In this section the results for two-phase flow boiling using high-speed visualization are
presented] Six different flow patterns are defined and an explanation of the flow reversal
typically observed in two-phase flow is given. General observations for the bubble growth,
bubble frequency, and pressure oscillations in microchannels are reported. Finally, the flow
patterns from this study are presented in the form of flow regime maps and compared with

published flow regime maps for macrochannels and microchannels.

5.1 Experimental Results

The morphology of the two-phase flow plays a critical role in the determination of pressure
drop heat and mass transfer during vaporization and condensation processes. Traditionally,
flow patterns are plotted as flow regime maps where the boundaries between the flow
patterns have been established through visual observations. Analogous to predicting the
transitions from laminar to turbulent flow in single-phase, two-phase flow pattern maps
are used for predicting the transition from one type of two-phase flow pattern to another.

In addition, flow regime maps are required and will be a step forward for future modeling

LA summary of the results for flow patterns, boiling curves, HTC, and pressure drop can be found in

Galvis and Culham) (2012)
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based on individual flow regimes instead of the development of a model that covers all

observed flow patterns.

The purpose of the two-phase flow visualizations in this research is to contribute to a
better understanding of the physical mechanism of two-phase flow boiling in microchan-
nels and propose new flow regime maps for mini and microchannels. For that reason, the
flow patterns are recorded using high-speed videos and then presented in the form of a
flow regime map. The flow visualization was useful for the identification of the flow pat-
terns but also for the study of bubble growth, bubbly frequency, and flow reversal in mini
and microchannels. Simultaneously with the two-phase flow visualizations, experimental
variables such as pressure drop, mass flow, heat input, and temperatures in the microe-
vaporators were monitored. This information is used to investigate the dependence of the
heat flux on the pressure drop. These experimental data are also used to investigate the

thermal performance in microevaporators which is discussed in the Chapter [6]

The flow patterns were recorded with a high-speed video camera with a steady supply of
water flow and heat input to the microevaporators. Details of the experimental conditions
and procedure are shown in Chapter 3| section [3.1| but a short summary is given as follows.
The temperature of the fluid was kept constant at approximately 50 °C' at the inlet of
the evaporator. For a fixed mass flow and heat input, videos of the flow patterns were
recorded when steady state conditions in the microevaporator were reached. The steady
state condition was determined when the temperature values from the thermocouples in
the microevaporator and heater block (as shown in Figure did not vary with time. The
steady steady condition was visually monitored with a real time plot of these temperatures
in the data acquisition system. In order to identify the dependency of the heat and mass
flux on the flow patterns, the heat input was set to a new value while the mass flux was
kept constant. The heat input supplied by the carriage heater ranged between 5 and 130
watts and the mass flux from 350 to 1300 kg/m?s. Approximately 34 GB of memory with
606 high-speed videos were recorded and classified during this study.
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5.2 Flow patterns

Figure 5.1: Flow patterns: left: actual image, right: enhanced with Matlab image process-
ing tool, vapor quality estimated from Equation [3.20] (a): bubbly flow = &~ 0, (b): slug
flow 2 = 0.12, (¢): churn flow x = 0.19, (d): annular flow x = 0.24, (e): wavy annular flow

x = 0.31, (f): inverted annular flow x = 0.47

After a detail analysis of the videos, the flow patterns in the microchannel evaporators
were classified in terms of the most commonly accepted terms and descriptions. Figure[5.1
shows the actual and the enhanced flow pattern images observed during these experiments,
where the flow direction is from right to left. A single flow pattern is observed everywhere
along the channel, and the images captured in this work are all taken at the midpoint
of the channel length. The purpose of this figure is to illustrate the representative flow
patterns observed in the microevaporators during all the experimental conditions in this

study. The conditions associated with these flow patterns are discussed in section [5.0]
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where the flow patterns are a function of the heat flux, mass flux, channel size, and phasic

superficial velocities.

Figure[5.1|(a) shows bubbly flow, where the vapor phase is distributed in discrete bubbles
within a liquid continuum. Small cavities on the heated surface trap vapor and serve as
nucleation sites. If the heated surface temperature exceeds the saturation temperature, a
bubble may grow inside the cavity and appear at its mouth. As the heat flux increases, the
bubble generation rate at the wall increases, bubbles become larger but small compared
to the channel size and eventually are detached from the wall surface and move along
with the stream fluid. When a bubble spans the entire smaller lateral dimension of the
channel (mainly due to bubbles growing or bubbles coalescing), the bubbly flow changes
to slug flow. The slug flow as shown in Figure (b) is characterized by confined bubbles
separated by liquid slugs which may or may not contain a dispersion of smaller vapor
bubbles. The nose of the bubble has a characteristic spherical cap and the vapor in the
bubble is separated from the wall surface by a descending film of liquid. The length of the
elongated bubbles vary considerably with the heat flux. The evaporating rate increases

with the heat flux which increases the length of the vapor slug.

If the velocity of the two-phase mixture flow in slug flow is increased (e.g. adding
heat to the system resulting in increased vapor quality), the structure of the large vapor
bubbles becomes unsteady. This instability results in a chaotic motion of the irregular-
shaped vapor pockets, with literally no discernible interfacial shape. Both phases may
appear to be contiguous, and incessant “churning” flow is observed as shown in Figure
5.1)(c). Although “churn” flow is usually reserved for vertical geometries, the same name
is used here due the similar appearance. In fact several authors are also using the term
“churn” in horizontal channels (Saisorn et al.| |2010; Harirchian and Garimella, [2009blja;
Ekberg et al.,[1999). At much higher quality levels, the two-phase flow assumes an annular
flow as shown in Figure [5.1[d). This consists of a liquid layer film on the channel walls
with a continuous interface to a vapor flowing in the center core. When the vapor velocity
is high, a wavy annular flow is observed, where the interface becomes unsteady, leading

to the formation of waves at the interface as shown in Figure (e). At very high fluxes,
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dry-out is observed where most channel walls are dry, except for a fluid that apparently is

flowing on the top wall of the channel, this type of flow is referred to as inverted annular

flow as shown in Figure [5.1{f).

5.3 Bubble size and bubbly frequency

The completed process of liquid heating, nucleation, bubble growth and release, collectively
referred to as the ebullition cycle (Carey, 2008; |Kim|, 2009) is the central mechanism of
heat transfer from a superheated wall during nucleate boiling. In macro heat transfer two
features of this process that impact the rate of heat transfer during the ebullition cycle are
the bubble diameter at departure and the frequency at which bubbles are generated and

released.

In macro boiling, the bubble diameter at release is primarily determined by the net
effect of forces acting on the bubble as it grows on the surface. Interfacial tension acting
along the contact acts to hold the bubble in place on the surface. Buoyancy is often a
major player in the force balance and depends of the channel orientation. Also, the inertia
associated with the induced liquid flow field around the bubble may also tend to pull the
bubble away from the surface. All these similar effects reported during bubble growth in
macro boiling were observed in the microevaporators with the exception of the gravitational

effects due to the dominant inertial and surface forces.

The bubble size and bubbly frequency are studied from the high-speed videos. The
bubble diameter and location of the bubbles at each frame of the video are analyzed using
Photron Fascam viewer software for high-speed digital imaging processing. The position
of the vapor and liquid slugs in the microevaporators is identified using a “measuring tool”

provided by the software after a scale calibration procedureE]

2Setting a distance between 2 points on the image. The channel width is used as the calibrating

parameter.
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Figure 5.2: Sketch for a vapor slug growth

Figure [5.2|shows a sketch of the growth evolution for a vapor slug. Typically, the vapor
slug expands along the length of the microchannel. The vapor slug growth is estimated
based on its length change per unit time. The length of the slug is measured based on the
position of the meniscus. In frame 1 (at t = ¢; as shown in Figure[5.2)), the position of the
tail and front meniscus of the vapor slug is defined as z,; and x; respectively. In frame
2 (at t = ty), the vapor slug moves, and the new positions of the meniscus are defined as
Zoar and xp A The length of the vapor slug in frame 1 is calculated from z; — z,,; and

for frame 2 x, o¢ — x5 A¢. The vapor slug growth is estimated from the change of length as:

(xL,At - Jfo,At) - (l’L,t - xo,t)
At

slug growth = (5.1)

76



Table 5.1: Results for the positions and vapor slug lengths in the microchannel 198 x 241 um
at 9 watts and 1 ml/min, (video capture rate 20000 fps)

Xot, 4M XL at, #M | Frame [Length, gm | Time, us

0 996.0 89203 996.0 0.00
56.8 1068.4 89208 1011.6 0.25
136.6 1148.8 89213 1012.2 0.50
192.8 1229.1 89218 1036.3 0.75
233.1 1309.5 89223 1076.4 1.00
297.3 1381.7 89228 1084.4 1.25
377.6 1462.1 89233 1084.5 1.50
466.0 1630.8 89243 1164.8 2.00
610.5 1783.4 89253 1172.9 2.50
698.9 1944.1 89263 1245.2 3.00
843.5 2096.7 89273 1253.2 3.50
939.9 2265.4 89283 1325.5 4.00
1084.5 2434.1 89293 1349.6 4.50
1172.9 2602.8 89303 1429.9 5.00
1309.4 2795.6 89313 1486.2 5.50
1413.9 3028.6 89323 1614.7 6.00

Table shows the results for positions and vapor slug lengths for the channel 198 x
241 um at 9 watts and 1 ml/min of heat input and liquid volumetric flow rate respectively.

Results for other conditions are shown in Appendix [G] section [G.3]

Higher magnification in the microscope is required in order to capture more detail
associated with bubble and slug growth processes. Unfortunately, only a small portion
of the channel length can be observed at higher magnification. Therefore, for evaluating
a longer length of the channel without sacrificing magnification, videos are recorded at
different portions of the channels until approximately 3/4 of the total length of the channel

is covered.

In order to identify the bubble growth dependency on the flow rate and heat flux, the
heat flow and volumetric flow rate are varied between 9 and 22 watts and 1 to 3.8 ml/min
respectively. Due to instabilities in the flow patterns, in addition to the rapid change of the

bubbly or slug flow into annular flow, it was not possible to perform any further studies in
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terms of the bubble growth, number of active nucleation sites, etc. However, the following

general observations were possible from the steady bubbly and slug flow patterns:

e A general trend observed was a decreasing of the bubble departure diameter with
the heat flux. It is also expected that as the flow rate increases, the bubbles may
detached quicker from the surface as a result of the increasing drag forces over the

bubble.

e A number of active nucleation sites were observed at the middle of channel at different
flow rates and heat flux. The active cavities were identified when bubbles in the
channel surface appear. It was evident that the number of active cavities increases

with the heat flux.

e The positions of the front and tail meniscus of a vapor and liquid slug vs time were
measured for a steady slug flow pattern. Figure [5.3| shows a typical trend of the
position vs time for the menisci of a vapor and liquid slug. Since the slope of the
line represents the velocity, it can be concluded that the vapor and liquid slug are
moving at constant and similar velocities. Therefore, for this case, the homogenous
flow model, which assumes equal vapor and fluid velocities should be applicable. It
is important to mention that Figure [5.3] also implies a constant length of the slugs.
However, a change of length in the vapor slug was also observed as the heat flux
increases due to evaporation of the film liquid or increases in the vapor slug pressure.
Figure shows the change of length of a vapor slug per unit time (or vapor slug
growth velocity) at different heat fluxes. From Figure , it can be concluded that

the rate of growth of a vapor slug increases with the heat flux.

e Successive slug bubbles that flow in tandem down the passages were observed, this
resulted in high frequency of repeated nucleation in a single cavity or nucleation
at multiple sites. The vapor slugs may eventually merge into longer slugs due to
different menisci velocities or the vapor slug can expand to subsequently evolve into

annular flow.
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Figure 5.4: Vapor slug growth at different heat fluxes (volumetric flow rate 1 mil/min,

channel 198 x 241 um)
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5.4 Flow reversal and intermittent flow patterns

During the analysis of the high-speed videos used for the identification of the flow patterns,
flow reversal was observed in the microevaporators. Typically, in the literature, the flow
reversal is attributed to a non-uniform distribution of the fluid in the microchannels. The
purpose of the high-speed videos of the flow patterns is also to identify if flow reversal
is presented in single channel microevaporators and what may cause its formation. Flow
reversal can be prevented using nucleation sites at the surface of the channel wall (Kandlikar,
et al.,[2006b), using an inlet orifice upstream of the channel, or expanding the microchannel
in the flow direction (Lee et al.| |2010). In order to understand the natural development of
the flow reversal in a straight single channel, none of these procedures were used in this
study. It is important to mention that having a single channel in the microevaporator, the

problem with non-uniform distribution of the fluid in the channel is avoided.

Figure 5.5 shows a sequence of vapor expansion during slug flow for a low heat flux
(¢ = 546 kW/m?). Figure[5.5a) shows a typical bubbly flow moving in the flow direction
toward the channel exit, the bubble on the left side grows as shown in Figure (b).
This bubble continues growing but is confined by the channel walls and expanding in
both directions. The expansion of the bubble upstream, opposite to the the flow direction
causes reversed flow as shown in Figures [5.5[c) to (f). The flow reversal was attributed
to the expansion upstream of confined bubbles. Flow reversal in parallel microchannels
has also been reported by Kandlikar| (2004) and [Steinke and Kandlikar| (2004) multiple
channel microevaporators. The bubble expansion is caused by a large enough evaporating
momentum force that overcomes the relatively low dynamic pressure of the flow, and/or

manifold pressure at the channel inlet.
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Figure 5.5: Reverse flow, 378 x 471 um, G = 365 kg/m?s, ¢ = 546 kW /m?: (a): bubbly
flow, (b): bubble on the left starts to grow, (c) to (f): bubble is confined by the channel

wall and the expansion upstream causes flow reversal.

Figure 5.6: Meniscus displacement: (a)-(c¢): bubbly expansion and tail meniscus displace-
ment against flow direction, (d)(f): pressure gradient in the channel overcomes evaporating

momentum and tension forces and moves the tail meniscus towards the outlet.
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The bidirectional growth of the slug may slow as growth proceeds and eventually stops
as superheat in the fluid is consumed. The displacement of the tail meniscus of a vapor slug
opposite to the flow direction is shown in Figures (a) to (c). Eventually, the pressure

drop gradient along the channel acts to move the slug bubble towards the outlet as shown

in Figure (d) and (c).

Figure 5.7: Intermittent flow, 378 x 471 um, G = 1373 kg/m?s, q¢ = 3146 kW/m?*: (a):
bubbly flow, (b): churn flow, (¢): annular flow, (d): Localized dry out condition, (e):
re-wetting of the channel, (f): wavy annular flow, (g): bubbly flow.

Two flow patterns are expected during transitional flow (e.g. bubbly flow to slug and
slug flow to bubbly). When more than two patterns are observed, the pattern is referred
to as intermittent flow. A typical intermittent flow is shown in Figure 5.7, where a bubbly
flow, as shown in Figure 5.7(a) turns to a churn flow and annular flow in less than 6 ms
as shown in Figures [5.7[(b) and (c). The liquid film boiling in the annular flow decreases
and eventually shows dry-out spots as shown in Figure (d). Figure [5.7(e) shows the
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instant where almost half of the channel length is re-wetted. Finally, the flow pattern turns
into wavy annular flow (Figure [5.7(f)) before reaching its original bubbly flow condition as
shown in Figure (g) During this intermittent flow pattern, an oscillating pressure drop

was also observed, this is discussed in next section.

In summary, flow reversal is presented in single channel microevaporators and it is at-
tributed to the expansion upstream of confined bubbles. Microevaporators can experience
multiple flow patterns in a very short time (e.g. approximately 20 ms) even under steady
input conditions such as heat and mass flux. These “unsteady” flow patterns called in-
termittent flow in this research, could be one of the reasons for the discrepancies between

experimental results and models for two-phase flow boiling in microchannels.

5.5 Pressure drop and channel wall temperature

To achieve normal flow conditions in a microevaporator, the pump must overcome the total
pressure drop of the system. Therefore, it is important to know how the pressure drop
changes during flow boiling in order to select a proper pump capacity. Simultaneously to
the flow visualization, data for pressure drop and channel wall temperature are recorded
as describe in section 5.1 The purpose of these measurements is to identify the maximum
pressure drop in the microevaporators and the dependency of the pressure drop on the
heat flux. The measurements of the channel wall temperature are used to assist with the

identification of dry-out conditions in the microchannel.
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Table 5.2: Pressure drop in minichannel 378 x 471 ym, mass flux G ~ 364 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k!:’a

' kPa psi
55 60.8 3.0 0.4
52 61.3 3.1 0.5
49 62.0 2.9 0.4
157 77.9 3.0 0.4
170 75.4 3.2 0.5
163 76.8 3.1 0.5
276 91.3 3.5 0.5
268 93.1 3.5 0.5
283 90.0 3.5 0.5
324 97.0 3.6 0.5
328 96.2 3.7 0.5
326 96.6 3.6 0.5
421 100.1 3.8 0.5
420 100.3 3.8 0.5
420 100.3 3.7 0.5
525 101.8 4.8 0.7
524 102.0 4.9 0.7
524 102.0 4.9 0.7
634 102.4 5.4 0.8
631 102.9 6.3 0.9
631 102.9 6.6 1.0
771 104.3 8.0 1.2
771 104.3 8.1 1.2
947 106.3 11.1 1.6
947 106.2 11.2 1.6
1123 108.4 14.4 2.1
1124 108.4 14.7 2.1
1301 110.3 19.1 2.8
1299 110.7 20.2 2.9
1475 112.6 24.3 3.5
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Table Pressure drop in minichannel 378 x 471 pum, mass flux G ~ 364 kg/m?s (cont)

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k_Pa
kPa psi
1474 112.9 24.8 3.6
1649 113.8 27.7 4.0
1655 114.3 28.7 4.2
1833 116.0 32.5 4.7
1832 116.1 32.3 4.7
2012 117.0 37.1 5.4
2009 117.6 36.3 5.3
2011 117.1 37.4 5.4
2181 120.1 41.2 6.0
2354 123.5 50.0 7.3
2516 127.7 60.0 8.7
2683 132.8 74.7 10.8
2834 139.2 91.6 13.3
3001 143.1 102.3 14.8

Table [5.2] shows the results of the pressure drop and channel wall temperature for the
minichannel 378 x 471 um for a fixed mass flux (G ~ 364kg/m?s) and different heat fluxes.
Results for other mass fluxes and channel sizes are shown in Appendix[G]section|[G.6l Each
data point corresponds to an average of 50 data at steady state conditions. These data are
collected using the same process used during the two-phase flow visualization. The mass
flow and heat flux are kept constant until steady stated is reached. The process is repeated

at different heat fluxes.

In contrast to single-phase flow, where the pressure drop is constant for a fixed heat
flux, in boiling two-phase flow, the pressure drop increases with the heat flux. From Table
[.2] the pressure drop increases from 3.0 to 102.3 kPa as the heat flux increases from 55 to
3001 kW/m?2. The maximum average pressure drop reached during the experiments was

~ 113 kPa (16 psi).
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Figure 5.8: Results for pressure drop and channel wall temperature for microchannel 198 x

241 pm at constant mass flux G ~ 340 kg/m?s

Figure shows the behavior of the pressure drop and channel wall temperature for
the 198 x 241 pm microchannel at constant mass flux G' = 340 kg/m?s as the heat flux
is varied from 63 to 1240 kW /m?. This figure is divided into three regions, single-phase,
incipient boiling, and boiling two-phase flow. The single-phase is found before ONB
and the boiling two-phase flow when at least one of the flow patterns defined in Figure
is observed. The incipient boiling located between the single and two-phase regions,
was characterized by bubbles that grow in cavities and are attached to the channel wall
(this avoids confusion with bubbly flow where bubbles travel with the fluid). For this
configuration, ON B commenced at a heat flux gonp = 120 kWW/m? and incipient boiling
was observed between 120 and 200 kW/m?. As seen in Figure [5.8] the heat flux of 200
kW /m? marks the point where boiling two-phase flow begins (slug flow pattern commenced
at this point). The pressure drop in the channel did not show any dependency on the

heat flux for the single-phase and incipient boiling regions; however, it increases with the
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heat flux in the boiling two-phase flow region. This characteristic was observed in both
microchannel evaporators for all flow rates evaluated. It is important to mention that the
incipient boiling region was not observed during all experiments where a flow pattern was

observed immediately after ON B.

The channel wall temperature shows almost a linear behavior with respect to the heat
flux for both evaporators regardless of the flow rates for single and incipient boiling re-
gions. A significant change of temperature-heat flux slope is observed during the transition
between incipient and two-phase flow regions at ¢ = 200 kW/m? as shown in Figure .
For this particular case, CHF (dry-out condition) is observed with an inverted annular
flow pattern. At this condition, the pressure drop and channel wall temperature increased
significantly with a very small increment on the heat flux as shown in Figure [5.8] Sim-
ilar trends for pressure drop and channel wall temperature were reported by |[Chen and

Garimella) (20006]).
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Figure 5.9: Pressure drop for two different channel sizes as a function of the heat flux for

a constant mass flux G ~ 1300 kg/m?s
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It is well known that for single-phase flow, the pressure drop in a channel increases as
the channel size decreases for a given flow rate of coolant. It is interesting to know if this
can be applicable for two-phase flow. Figure |5.9| shows the variation of the pressure drop
with the heat flux for two microevaporators with different channel size for a given mass
flux. The near horizontal line in the first portion of the curves represent single-phase data,
where no effects of heat flux are expected on the pressure drop. As the heat increases,
boiling commences, and the pressure drop begins to shows dependency on the heat flux. It
is evident from Figure that for a given mass and heat flux, the pressure drop is higher
in the smaller microchannel. This is analogous to the single-phase case, where the pressure
drop increases as the channel size decreases for a constant mass flow rate. Therefore, for a
given mass flux of coolant, the two-phase flow pressure drop increases as the channel size

decreases or the heat flux increases.
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Figure 5.10: Pressure drop oscillations for 378 x 471 ym minichannel

A direct consequence of high heat flux is a fluctuation in the wall channel temperature
and the measured pressure drop across the microchannel. Figure |5.10| shows the pressure

drop time traces for the 378 x 471 um minichannel at two different heat fluxes and constant
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mass flux. The fluctuation strength or peak amplitude, quantified as two times the standard
deviation (o) of pressure drop measurements was approximately 26 % and 44 % for ¢, =
4107 kW/m? and q,, = 2254 kW /m? respectively as shown in Figure . The amplitude
of the oscillations in the pressure drop and channel wall temperature increases with the
heat flux and can be attributed to the growth of confined bubbles, re-wetting, and flow

reversal.

5.6 Flow regime maps
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Figure 5.11: Summary of boiling flow patterns in a 198 x 241 pym microchannel. SP:

single-phase, S: slug flow, S — A: slug and annular flow, I: inverted annular flow

Flow patterns are typically presented in a convenient form called flow regime maps. Figure
shows a non-conventional representation of a flow regime map but this form seems to
be more practical for electronics cooling since it includes the heat flux and mass flux. Figure

shows a summary of the flow patterns observed in a 198 x 241 um microchannel at heat
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fluxes up to 2500 kW /m? and four different mass fluxes G = 340, 681, 1024, 1296 kg/m?s).
Any single flow pattern occurs along the channel. At this microchannel size, bubbly flow
was not established at the visualization location, and instead, slug flow commenced early
after the ONB. The slug flow started at heat fluxes 120, 338, 339, and 647 kW /m? for
mass fluxes 340, 681, 1024 and 1296 kg/m?s, respectively. As the heat flux increases, the
flow pattern changes to slug-annular flow. This flow is characterized by the expansion of
a confined bubble upstream and downstream that eventually takes up the total length of
the channel transitioning into annular flow. Note that as the mass flux is increased, the

transition lines are shifted towards higher heat flux.

A dry-out condition was reached for the lowest mass flux (G = 340 kg/m?s) and the
smallest channel size 198 x 241 pum. During this dry-out condition, inverted annular flow
was observed, starting at approximately 1100 kW /m? as shown in Figure . This kind
of flow pattern is undesirable, not only because the channel wall temperature drastically
increases but also because the heat transfer coefficient deteriorates due to the fact that the
heat is transferred by conduction and radiation through a film of vapor instead of a liquid

film.

As the mass flux increases, boiling or ON B commences at a higher heat flux, this has
also been reported by |Harirchian and Garimella (2010) and Bertscha et al. (2009). This
can be attributed to a thinner thermal boundary layer or an increase in the saturation

temperature due to higher pressure in the channel as the mass flux increases.

Flow pattern maps for the 198 x 241 um microchannel plotted using liquid vs. vapor
superficial velocities (jr, j,) and mass flux (G) vs. vapor quality () are shown in Figure
5.12| Boiling typically starts at ON B, followed by incipient boiling (IB), slug flow (.5),
slug and annular flow (S — A: where a vapor slug expands and occupies the total length
of the channel), and inverted annular flow (7). This progression from incipient boiling to
inverted annular flow is shown in Figure for a fixed mass flux G ~ 340 kg/m?s as the

heat flux increases.
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Figure 5.13: Flow regime map for 378 x 471 pum minichannel. B: bubby flow, B — S:

bubbly-slug flow, S: slug, A: annular flow, INT": intermittent flow

Figure shows the flow regime map for the larger channel tested. This flow map
shows patterns that were not observed in the smaller channel (e.g. bubbly and intermittent
flows). The bubbly flow pattern appears in the conventional size channels typically at high

liquid and low vapor superficial velocities, due to turbulence in the liquid breaking up the
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vapor phase into small bubbles. In this microchannel, bubbly flow commenced early after
I B at lower mass flux but quickly changed to bubbly-slug flow. Intermittent flow was the
most predominant flow pattern in this minichannel which was observed at higher vapor
or liquid superficial velocities, where turbulence and agitation of the vapor-liquid interface
will result in much more chaotic patterns. It is evident that the higher the mass flux, the
earlier the transitions between the different flow patterns occur, this characteristic behavior

of the transition lines was also reported by |Callizo| (2010)).

5.7 Macro and micro flow regime maps comparison

Although, there have been recent efforts to study the diabatic two-phase flow at the mi-
croscale, there are a limited number of publications considering water as the working fluid
in rectangular channels with hydraulic diameters less than one millimeter. In this section,
the diabatic flow regime map obtained in this work is compared with existing adiabatic
and diabatic two-phase flow regime maps and experimental transition lines for horizontal

flow in the conventional size channels as well as in microchannels.

5.7.1 Macroscale flow regime maps

As mentioned in section [2.1.1] one of the earliest flow regime maps available for horizontal
flow is that of Mandhane et al.| (1974) shown in Figure The transition boundaries
were presented in a log-log plot using superficial phasic velocities of 1178 flow patterns

observations for an air-water system in a pipe with inside diameters between 13 and 165mm.

As shown in Figure this macro flow regime map presents very poor agreement with
the present experimental data both with respect to the significant trends of the curves and
the absolute locations for the S — A and I flow patterns. In this work, the majority of
flow patterns (S — A, I) observed in the smallest channel tested are in the annular region
of Mandhane’s flow map, and a majority of the slug flow patterns match in both regime

maps but transition lines are different.
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Figure [5.15 shows the experimental flow data for the 198 x 241 um microchannel com-

pared to predictions using the model for horizontal gas-liquid flow in the conventional size

channel of [Taitel and Dukler| (1976). In general, traditional two-phase flow regimes maps,

developed for mini and macroscale channels (with a hydraulic diameter larger than a mil-

limeter), such as the widely adopted map by Mandhane et al| (1974) and the transition

criteria developed by [Taitel and Dukler (1976]) for gas-liquid flow in horizontal channel

cannot be applied for diabatic two-phase flow in microchannels. This can be attributed
to the impact of surface tension, confinement effects, in addition to the coupled effects
between heat and fluid mechanisms in diabatic systems which may lead to different flow

regime maps.

5.7.2 Microscale flow regime maps
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Figure 5.16: Comparison between flow regime maps: Present flow regime map (198 x241um

microchannel) and pipe (D = 0.509 mm) by |[Revellin and Thome, (2007b))
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Figure[5.16|shows a comparison between the 198 x241pum microchannel with the flow regime

map by Revellin and Thome| (2007b)) obtained for R-134a in a pipe of 0.509 mm internal

diameter and 50 mm length. Although, the geometry sizes are comparable, and both flow
regime maps were obtained under diabatic conditions, the agreement is not satisfactory. It
is important to mention that the thermophysical properties of R-134a differ significantly

from those of water and the cross sectional areas of the geometries are also different.
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Figure 5.17: Comparison between flow regime maps: Present flow regime map (198 x241um

microchannel) and minichannel (250 x 400 pm) by Harirchian and Garimella (2009b))

In Figure [5.17] the flow regime map for the smallest channel tested in this work and

the one obtained by Harirchian and Garimella) (2009b) are compared. In this case both

geometries are for rectangular channels with comparable size and diabatic conditions. As
in Figure this flow map is for R-134a and their data are shifted to the left side. Again,

only a small region of the slug flow data is consistent between these flow regime maps.
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Figure 5.18: Comparison between flow regime maps: Present flow regime map (198 x 241 um

microchannel) and microchannel (119x173 wm) by |Singh et al. (2009)

Finally, in Figure[5.18|the 198 x 241 m microchannel is compared with the experimental
flow regime map obtained by [Singh et al| (2009). Both flow regimes are for water as
working fluid, rectangular channels with hydraulic diameters 141 and 270 pwm, and at
diabatic conditions. The experimental data reported by [Singh et al. (2009) are for mass
flux and vapor quality up to 425 kg/m?s and 0.3 respectively (dot lines on Figure . In
these flow regime maps, the change of the flow pattern from bubbly to slug and from slug

to slug-annular is consistent but the flow transitions are located in very different regions.

In summary, the flow regime maps in Revellin and Thome| (2007b); Harirchian and
Garimellal (2009b)); [Singh et al.| (2009) among other publications, indicates a progressive
change on the flow pattern which is consistent with the observations in this work. Typically,
bubbly flow commences and develops into slug and annular flow as the vapor quality or
superficial vapor velocity increases. All flow patterns observed in the microchannels are also
found in macro size channels. However, the confinement of the bubbles in macrochannels

play an important factor in the characteristics of the flow pattern and transitions. Stratified
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flow was not observed in the microchannels because gravitational effects are neglected.
Higher heat flux is required to reach ON B as the mass flux increases. This is associated
with a higher saturation temperature (pressure increases in the channel) as the mass flux
increases. Bubble departure diameter decreases with the heat flux and mass flux. The
higher drag force in the bubbles due to higher mass flux causes quicker depart of the
bubbles from the surface. The number of active cavities increases with the heat flux. This
is consistent with boiling in macro and micro size geometries reported in other publications.
The vapor slug length increases with the heat flux because the higher evaporative rate.
Flow reversal is presented in single channel microevaporators and it is attributed to the
expansion upstream of confined bubbles. Macro and micro flow regime maps are not
comparable, and the differences are mainly attributed to the confinement of the bubbles.
Re-wetting and pressure oscillations may play a crucial role and are likely responsible for

the development and evolution of flow patterns.
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Chapter 6

Experimental Heat Transfer

Coefficient, HT'C

In this chapter, the thermal performance of microevaporators is evaluated based on ex-
perimental boiling curves and the HT'C'. The boiling curves are presented as heat flux vs
wall channel superheat at different mass fluxes. Maximum heat fluxes and channel wall
temperature are reported to estimate the potential application of microevaporators with
water as the working fluid in cooling systems for high heat flux. Finally, the experimental

HTC's are compared with some published models.

6.1 Experimental Results

Heat transfer data in the microevaporators were recorded simultaneously with the flow vi-
sualization measurements as described in Chapter 5] Details of the experimental conditions

and procedure are described in the Chapter [3] section

99



£2°0 $'81¢ ¥9°ZT 2611 €611 29.2 298 ¥8Z1
£2°0 5Tee 8y'eT 0611 T611 9.2 658 5821
610 v'vZe 9801 L'STT L'STT 9EVT vEg /821
10 0'6e2 226 121 121 11e 708 0621
110 /'62¢ v.'] ¥'601 ¥'601 8L.1 68. 16¢1
100 0912 59'9 9201 9201 LEVT 58/ 1621
¥0°0 0'S02 /9' 1901 0901 2911 8./ 2621
£0°0 S'€0C S0'S £50T 2501 8201 6./ 2601
100 SETe 6TV Zy0T 10T 568 8./ 2601
000 8'992 182 9201 9201 99/ 111 2621
570 5'6¢ £0'62 ZIET 0'TET et 92 yEE
870 186 5921 SSTT SSTT vl 952 GEE
/70 0'68 6°€T 6'GTT 0911 8ECT 95¢ GEE
8€°0 6'€9T 18'9 2'L0T 17201 9111 822 8ee
10 8'597 0L'S 9'50T ¥'S0T 96 544 8ee
€0 5697 65'S 5'S0T £50T L6 922 8EE
¥Z'0 0097 £9Y 10T 8'€0T ov. See 8EE
/T0 8.1 £8' £'€0T T€0T 709 912 6EE
070 ErT 6.C /701 5701 10V 812 6EE
£0°0 ¥'05¢ 907 /'66 566 ¥92 502 ove
100 ST1. 82°0 066 9'86 002 ¥0¢ ove
MO LMW MU | 0,21 ® L | 007 ML | D02 ® ML | JWA D | ed | s, Wby D

(wrl THg X GT [PUURYDOIDIU) APN)S 9dURULIOLDd [RULISY) 10] SHMSOY :T°Q 9[qR],

100



Table [6.1f shows a summary of the results used to estimate the thermal performance of
the microevaporator with the microchannel size 198 x 241 um. More data at different flow
conditions for this microchannel, and for the microevaporator with the minichannel size

378 x 471 pum are shown in Appendix [G] section [G.7]

The local HT'C' is calculated at the middle of the channel which corresponds to the
same location where the high-speed videos for the flow patterns are recorded. Details of
the procedure for the estimation of the HTC are given in the Chapter |3| section [3.2.2]
Equation [3.18] is used for the calculation of the local HT'C, where the channel saturation
temperature is estimated at the local pressure in the channel. The local HT'C estimated

at the middle of the channel represents the average HT'C of the microevaporator.

6.2 Boiling curve

Boiling curves are plotted for the 198x241 and 378 x 471 um microevaporators in Figures
and respectively in terms of the variation of wall heat flux with temperature dif-
ference between wall and saturated temperature at the end of the channel. The results
are plotted at four mass fluxes in the range of 350 and 1300 kg/m?s for a process path
increasing the heat flux up to & 4400 kWW/m? or until a maximum temperature in the mi-
croevaporator assembly unit reaches 180°C'. Since this maximum temperature was reached
by the cartridge heater, data points for the boiling curve were not possible at higher heat
fluxes in some cases. The inlet temperature of the fluid was controlled at 50 °C' which

corresponds to approximately 50 K of sub-cooling for all boiling curves.

A single-phase region which corresponds to the straight line portion of the boiling
curve is observed before the ON B (see Figures and . Based on the typical behavior
of the boiling curve during pool or flow boiling, after ON B this linear behavior should
disappear and the characteristic curvature of the boiling curve must appear. Since the
channels experience incipient boiling (single-phase still dominating over two-phase flow),
the curvature is not appreciable immediately after ON B. Using high-speed visualizations,

the ON B was observed when the first bubbles forming on a crevice survive condensation.
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The ON B shows the dependence on the mass flux, this was more evident in the channel size

198 x 241 um where higher heat fluxes were observed at ON B as the mass flux increases.
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Figure 6.2: Boiling curves for minievaporator 378 x 471 yum minichannel
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Wall superheat excursion or wall temperature overshoot, which is usually found after
the initiation of ON B was not observed. After ON B or the incipient boiling region, the
nucleate boiling region starts, which is characterized by the increasing of the slope on the

boiling curve as the heat flux is increased.

The C'HF is characterized in the boiling curve as a large increase in wall superheat
with a small increase in heat flux. None of the experimental data reached CHF (dry-out
condition), except the microevaporator with the smallest channel size (198 x 241 um) and
the lowest flow rate (G = 340 kg/m?s) as shown in Figure[6.1] During CHF, film boiling
was observed with an inverted annular flow pattern. Based on Figure[6.1] it seems that the
CHF increases as the mass flux increases; this was also reported by |Ali (2010); [Bertscha

et al. (2009).

As shown in Figure [6.1], the data converge into a single curve above 7 K of superheat,
and beyond this point, there are no noticeable effects of mass flux on the boiling curve
(except for G = 340 kg/m?s which reaches dry-out condition). Furthermore, there are
no effects of the mass flux on the boiling curve after this superheat. This observation
may support the dominance of nucleate boiling over a convection boiling mechanism after
8 K of superheat for the microchannel 198 x 241 ym. In contrast, for the larger channel
378 x 471 pm the boiling curves do not converge into a single curve as shown in Figure [6.2
indicating that convective boiling may dominates over nucleate boiling. Although similar
observations have been reported by others authors, the experimental conditions (type of
fluid, flow rates, channel size, etc.) are different. In addition, in this work the effects of
non-uniform inlet flow observed in multiple channel evaporator have been isolated by using

a single channel.
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6.3 Heat Transfer Coefficient, H1'C
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Figure 6.3: Average HT'C' vs vapor quality 198 x 241 pm microchannel
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Figure 6.4: Average HT'C' vs vapor quality 378 x 471 pm minichannel
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Figure 6.5: HT'C' vs heat flux 198 x 241 pm microchannel
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Figure 6.6: HT'C' vs heat flux 378 x 471 pm minichannel
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The average HT'C' is plotted as a function of local quality at the channel exit (Figures|6.3
and and heat flux (Figures|6.5/and for the channel size 198 x 241 and 378 x 471 um.
The data covers four different mass fluxes over the entire range of qualities and heat fluxes
possible with the current setup. The HT'C' decreases as the quality or heat flux increases;
this similar trend has been reported by Steinke and Kandlikar| (2004). The HT'C' is high at
low values of quality or heat flux and then begins to sharply decline until dry-out conditions
are reached. At this condition, the HT'C drastically declines as shown in Figure [6.3| at a
quality of x ~ 0.47.

Figure shows that the HT'C' for the channel size 198 x 241 um did not change with
the mass flux after a heat flux of ¢, &~ 900 kW /m?K (except for the dry-out condition).
This can also be supported from Figure [6.1], where the boiling curves also converge into a
single curve after a heat flux of ¢, ~ 900 kW /m?. Consequently, applying the macroscale
logic (which indicates that when nucleate boiling dominates the transport, the boiling curve
and HT'C becomes virtually independent of the flow rate), the HT'C' for this channel size

was predominantly controlled by nucleate boiling.

The high-speed visualizations confirm that nucleate boiling controls over convective
boiling since slug and S-A flow patterns (S-A: slugs than expand until reach the total
length of the channel) were the most observed during the experiments for this channel
size. A similar analysis for the 378 x 471 pm minichannel size indicates that the HT'C
depends on the mass flux and the boiling curves did not converge into a single curve as
shown in Figures [6.2 and During the flow visualization for this channel size, all flow
patterns were equally observed at higher heat fluxes (re-wetting and intermittent flow were
very common), which may confirm that nucleate and convective boiling are both of equal

importance.
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Figure 6.7: Microevaporators thermal performance curves at G ~ 1300 kg/m?s
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Figure [6.7 shows the channel wall temperature and HT'C' as a function of the heat flux
for a mass flux G' = 1300 kg/m?*s in both microevaporators. This figure is more convenient
when comparing the thermal performance between both microevaporators. From Figure
6.7, the wall temperature and HT'C' are comparable in both microevaporators for the same
heat flux. A similar conclusion is obtained with other mass fluxes tested. The exception
is for the mass flux G' = 350 kg/m?s but only when dry-out occurred in the microchannel
198 x 241 pum as shown in Figure Therefore, both microevaporators have comparable

thermal performances when the dry-out condition is not present.

Figures[6.7]and [6.8 also show higher HT'C' and lower channel wall temperature at lower
heat fluxes where sub-cooling boiling occurs. This may support the use of sub-cooled

boiling for electronics cooling as suggested by (Carey| (2008)).

In summary, the maximum heat fluxes dissipated are approximately 280 and 440W /cm?
for the microevaporator with microchannel 198 x241pm and microevaporator with minichan-
nel 378 x 471 pum respectively. These values of heat flux dissipation indicate that the
microevaporators with water as the working fluid are an attractive solution for high heat
flux cooling applications. The microevaporator with the minichannel is able to dissipate
higher heat flux because it is possible to achieve higher superheat with this microevapo-

rator without dry-out condition (T}, — Tye =~ 45 °C' as shown in Figure vs ~ 22°C in

Figure [6.1]).

6.4 Comparison of the experimental HT'(C's with pub-

lished correlations

Tables [6.2) and [6.3] shows the results for the experimental HT'C's and the predicted values
from the correlations in Table for the 198 x 241 um microchannel and 378 x 471 um
minichannel respectively. The results were obtained for mass fluxes between 340 and
1367 kg/m?s and heat fluxes between 264 and 4107 kW /m?K which cover a wide range of
the experimental data in this thesis. Based on the HT'C ratio (HT Choder/ HT Cexperimenai
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typically different than 1), the correlations indicate a poor prediction of the experimental
HTC's which is also evidenced by the large Mean Average Error, M AE, between 37 and
67 % estimated from Equation [6.1]

The M AFE for each model is reported in Tables and [6.3]in addition to the percentage
of predicted data within +30 % error band which is very low (between 0 and 45 %). Larger
M AE between 12 and 270 %, over and/or under predictions of experimental HT'C' using
correlations from the open literature are very common as reported by (Megahed} 2010;
Lee and Mudawar, 2008, 2004; Qu and Mudawar, 2003). Typically, the correlations are
adjusted (calibrated) for the new set of experimental data through new expressions for
the suppression and enhancement factors. The development of a model for two-phase
flow HTC' is beyond the scope of this thesis but the purpose of these comparisons is to
illustrate the higher errors in the prediction of the HT'C from traditional models that
are not generated based on the flow patterns. Even the most successful correlation after
“calibration”, predicts a maximum of 90 % of the data fall within the £30 % band error
and MAE =~ 15 %.

1 _
MAE ==Y (M x 100) (6.1)

n Peap
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Figure 6.11: Estimation of heat flux due to sub-cooling using the boiling curve

Figures and compare the predicted and experimental HT'C's, where higher

errors in the prediction of the HT'C' can be mostly observed at lower qualities which is

attributed to the sub-cooling in the experiments. The experimental HT'C's can be corrected

for sub-cooling by subtracting the heat flux attributed to sub-cooling (gs.) which can be
obtained from the boiling curves (Figures and at T,, — Tsee = 0 as illustrated in

Figure |6.11

Table 6.4: M AFE's in the prediction of HT'C's after sub-cooling correction

. .. |Gungor and| Schrock and| Lee and | Leeand [ Channel
Variable Kandlikar| . .
Winterton | Grossman |Mudawar|Garimellgl bxa, zm
MAE, % 55.9 39.0 47.8 67.0 66.9 | Microchannel
MAE (corrected), % | 30.8 38.1 17.7 37.5 38.5 198x241
MAE, % 51.4 449 37.1 63.6 47.5 Minichannel
MAE (corrected), % | 39.2 59.0 38.2 51.6 28.5 378x471
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Figure 6.12: Comparison of saturated flow boiling HT'C's after sub-cooling correction

(198 x 241 pym microchannel)

Figure shows the ratio of HT'Cs (the experimental HT'C' is corrected by sub-
cooling) versus the vapor quality for the microchannel evaporator. There is an appreciable
improvement in the prediction of the HT'Cs after sub-cooling correction at low vapor
qualities as seen in Figure and evidenced by the reduction on the M AFEs as shown in
Table [6.5] with the exception of the Gungor and Winterton, and Schrock and Grossman’s
correlations for the minichannel evaporator, possibly because these two correlations are

intended for conventional, larger geometries.

In summary, the proposed correlations from the literature are not able to predict the
heat transfer coefficient with low mean average error. The degree of sub-cooling on the
experiments must be taken into account for a proper comparison of heat transfer coeffi-
cients. Typically, the published correlations are “re-calibrated” through modifications of
the suppression and enhanced factors where the flow patterns are not strictly considered.
Therefore, modeling efforts considering individual flow patterns are strongly recommended

rather than a single model covering the entire range of flow patterns. This requires exten-
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sive data for the flow regime maps in microchannels prior to the development of analytical

or empirical models.
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Chapter 7

Conclusions and Recommendations

Microchannels heat exchangers are suitable for electronics cooling or applications where
high heat fluxes are required. In future applications that might reach 300 W/cm? in
the next few years, new cooling technologies are required. Two-phase flow boiling in

combination with microchannels may provide a potential solution for these applications.

An empirical or mathematical model of a physical phenomenon can be used to study
or even optimize its performance. Unfortunately, based on the literature review, the heat
transfer and pressure drop of boiling water in microchannels indicate several discrepancies
between experimental data and analytical or empirical models. Each particular model or
correlation was only able to predict the data from where they were obtained. In addition,
there is not a generalized model for boiling two-phase flow which can predict the pres-
sure drop or the heat transfer coefficient. Therefore, there is a serious need to conduct
a comprehensive study of phase change phenomena in microchannels to understand the

fundamental mechanisms involved in the process before attempting to develop any model.

In the present work, the experimental study was conducted in copper microevaporators
to systematically investigate and analyze the flow boiling characteristics in mini and mi-
crochannels and identify their potential for cooling systems for high heat flux applications.
Before the two-phase flow boiling study, single-phase experiments were performed. This

study was necessary because the extensive research in the last decade in single-phase flow
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in microchannels indicates discrepancies between the applicability of macroscale theories
to microchannels. Reasons for the discrepancies are traditionally attributed to microscale
effects that are not properly captured by the macroscale models. Due to a non-unified
criterion in the applicability of macroscale theory to microchannels, an experimental study
was conducted in micro heat exchangers with straight channels with hydraulic diameters

approximately 200 pm.

The most important results in this work are summarized as follows with some recom-

mendations based on the results found in this study.

7.1 Single-phase flow and heat transfer

7.1.1 Applicability of macroscale theory to mini and microchan-

nels

The applicability of macroscale theory for friction factor and heat transfer coefficient to
microchannel was confirmed for straight microchannels with hydraulic diameters up to
200 um. The experimental and theoretical data show agreement within the range of the

uncertainty of the experimental data.

The study in this thesis considered both fully developed and developing flow conditions
for laminar flow which complement published data in the literature that only consider fully
developed or turbulent flows. It is important to mention that based on the publications in
the last two decades, the applicability of macroscale theories to microchannel was not clear.
However, the most recent publications are more in favor of the applicability of macroscale

theory to microchannels.

The pressure drop in microchannels is very difficult to measure and normally the exper-
imental pressure drop includes pressure drop in bends, and contractions and expansions
between the channel and headers. Therefore, the measured pressure drop must be cor-

rected by these additional pressures (called minor losses) in order to properly identify the
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experimental pressure drop along the microchannel. The minor losses have more impact in
the calculation of the friction factor at higher Reynolds number because they are directly

proportional to the second power of the velocity.

Single-phase liquid flow and heat transfer characteristics can be predicted using laminar
flow theory in microchannels with water as the working fluid with hydraulic diameters as
small as 200 um. Deviation of the experimental data from the laminar fully developed
theory begins at Re ~ 500, and is attributed to entrance effects. A transition between
fully developed and developing flow conditions is observed in the range of 500<Re<1600.
The early transition to turbulent flow in microchannels reported by several authors in the

range of 1000 < Re,, < 1600 was not observed.

7.1.2 Entrance length in microchannels

A proper identification of the entrance length in microchannels is a key factor in the study
of transition from fully developed to developing laminar or turbulent flow. Therefore, nu-
merical simulations were used to study the developing flows in rectangular microchannels,
focusing on the entrance length and its dependence on the Reynolds number and the chan-
nel aspect ratio. New correlations for the entrance length were proposed for rectangular
channels with 100 um < dj, < 500 pm, and 0.5 < Re < 2000 as shown in Table 4.1 In
the present work, the proposed correlations contain not only more data points than cor-
relations obtained experimentally but also the effects of the channel aspect ratio and low

Reynolds number in the entrance length were also considered.

The results show that the dimensionless entrance length changes non-linearly with
Reynolds number for Re < 50, while exhibiting a nearly-linear dependence within 50 <
Re < 1000. Similar behavior was reported from experimental published data (Ahmad and
Hassanl, 2006} Renksizbulut and Niazmand), 2006} |Schlichting) [1979; Wiginton and Dalton,
1970).

The observed trends were found to be independent of the microchannel size for channel

aspect ratio of one (b/a = 1). This independence on the channel size on the entrance
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length may also reinforce the applicability of macroscale theory for microchannels under

these conditions.

The dimensionless entrance length increases with the channel aspect ratio at a given
Reynolds number. The effect of channel aspect ratio gradually diminishes as the Reynolds

number approaches Re =~ 50.

7.2 Boiling two-phase flow

Several studies in the literature consider refrigerants as the working fluid. However, in the
present study, water was used because it has the lowest thermal resistance compared with
other coolants. This is very important for the development of cooling systems for high

heat flux applications in the near future.

There are not enough data in the literature for boiling of water in mini and microchan-
nels with rectangular cross sectional area. Also, the experimental data in microchannels
normally are collected in microevaporators with multiple channels, where non-uniform flow
distribution in the channels is typically observed. In order to have a better control of the
flow distribution or flow rate per channel, the experimental data in this thesis were per-
formed in microevaporators with a single straight channel. In addition, back flow controls
(e.g. using check valves, controlled cavity sizes, etc.) were not implemented in the test rig

in order to observe the natural behavior of the boiling mechanisms in microchannels.

High-speed videos, in addition to heat transfer and pressure drop data collected in
the experimental microevaporators, permitted the generation of flow regime maps, and the
evaluation of the thermal performance in microchannel evaporators. The flow regime maps
were not comparable with macroscale flow regime maps, this difference may be attributed
to the confinement of the bubbles. Differences between micro and macroscale flow regimes
maps were also reported with refrigerants as the working fluid. The main conclusion in the

boiling two-phase flow experiments are summarized as follow:
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7.2.1 Two-phase flow visualizations

The high-speed visualizations confirm that the flow patterns depend on the mass flux, heat
flux and channel size. The main flow patterns observed after the onset of nucleate boiling
are bubbly, slug, churn, annular, wavy annular, and inverted annular flow. For a given
mass flux and channel size, the flow regimes progress from one to another as the heat flux
increases. However, it is possible that not all flow patterns mentioned above occur in a
channel (e.g. bubbly flow was not observed in the 198 x 241 pum microchannel since the
bubble was confined by the channel wall and slug flow commences almost immediately
after the onset of nucleate boiling). The bubbly flow pattern was only observed at lower
phasic superficial velocity and quickly changed to slug flow as the gas superficial velocity

was increased.

The high-speed visualizations show that confinement effects are present in microchan-
nels, where some bubbles grow in diameter until they reach the channel wall and then

expand along the channel.

A detailed study in the ebullition cycle was not possible due to instabilities in the
flow patterns and the rapid change of bubbly flow into annular flow. However, from the
few steady flow patterns it was possible to observe that the ebullition cycle follows similar
characteristics as reported by other authors|Owhaib| (2010)); Ali (2010) (A decreasing of the
bubble departure diameter, an increase of the number of active cavities, and an increase

of the rate of growth of a vapor slug with the heat flux).

Reversed flow observed in the microevaporators, revealed that this was caused during
the expansion upstream of confined bubbles. This may help to explain the reversal of flow
also observed in multiple channel microevaporators, which has been mainly attributed to

a non-uniform distribution of fluid between the channels.

During boiling two-phase flow, the pressure drop in a microchannel increased with the
heat flux for a constant flow rate, unlike in a single-phase where the pressure drop is
constant. Although, reversed flow was observed at lower heat fluxes, the pressure drop

remained relatively unaffected by flow reversal at this condition. Pressure oscillation was
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observed at higher heat flux and the amplitude of the oscillation increased with the heat

fux.

Intermittent flow which was characterized by the presence of more than two flow pat-
terns during a transitional low was observed mainly at higher heat fluxes. The intermittent
flow seemed to be caused by re-wetting of the channel walls. Therefore, re-wetting and
pressure oscillations may play a crucial role and are likely responsible for the develop-
ment and evolution of flow patterns. This characteristic “intermittent” flow in association
with pressure oscillations could be the reason for the differences between several empirical

models for heat transfer and pressure drop with experimental data.

The heat flux for the onset of nucleate boiling increases as the mass flux is increased.
The associated reduction in the thermal boundary layer thickness may suppress the onset
of nucleation until a higher wall superheat is attained. Since the critical heat flux was only
observed for the smallest microchannel size and the lowest mass flux, it is likely that the

critical heat flux can be avoided with higher mass flux and larger channel dimensions.

Flow patterns are closely coupled with the mass flux, heat flux and channel size. Bubbly
and slug flow tends to appear at lower heat flux, and become annular and inverted at higher
heat flux. A novel flow regime map plotted mass flux vs heat flux indicated that the flow

transitions shift to a higher heat flux as the mass flux is increased.

There was an evident difference between macro and microscale flow regime maps. Un-
fortunately, there is not enough published flow regime maps in microchannels for diabatic
conditions and water as the working fluid to compare. The flow regime maps developed in
this work are a step forward for the understanding on the two-phase flow boiling mecha-

nisms in mini and microchannels.

7.2.2 Boiling heat transfer and thermal performance on microe-

vaporators

Although, the effect of sub-cooling on the boiling curve was not reported in this work,

experimental results for two different sub-cooling temperatures (~50 and 70 K) show that
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the boiling curve is shifted upward as the sub-cooling is increased. This behavior in the
boiling curve with increasing sub-cooling or flow velocity was also reported by |Carey]| (2008]).
Therefore, care must be taken when comparing boiling heat transfer coefficients at different

sub-cooling.

The ONB is clearly shifted to higher heat flux as the mass flux and channel size is
increased. Larger channels or higher mass flow can help avoid C'H F'. For the experimental
microevaporators, the heat transfer coefficient was higher at lower vapor qualities or heat

fluxes where the flow pattern is more likely to be bubbly or slug flow.

The high heat flux capacity in the microevaporators indicates the potential for high
heat flux applications. The experimental results demonstrate that microevaporators with
rectangular channels with hydraulic diameters of 218 or 419 um, water as the working fluid,
and boiling as the heat transfer mechanism can dissipate heat fluxes of 280 or 440 W/cm?
which make them a very attractive solution for cooling systems for high heat flux applica-
tions. The microevaporators were tested almost at atmospheric pressure where water boils
at approximately 100 °C'. This value of temperature is high for electronics cooling appli-
cations where maximum allowed chip temperature is approximately 85 — 90 °C'. However,
the saturation temperature of the water can be lowered having sub-atmospheric pressures
in the cooling system. This is unlike fluorocarbons where the systems are pressurized to

have a more convenient saturation temperature of refrigerants.

7.2.3 Heat transfer coefficient models

Analytical models for boiling in microchannels are very complex, and the required as-
sumptions to solve these models restrict the ability to capture the “real” physics of boiling
mechanisms. Also, most empirical correlations are not able to predict other experimen-
tal data, even under a similar range of operating conditions where the correlations were
obtained. The complex nature of flow boiling in microchannels such as liquid-vapor inter-
actions, bubble growth in the flow as well as in the thin film make analytical or empirical

modeling of the two-phase flow a very difficult task.
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A serious need was felt to conduct a comprehensive study of phase change phenom-
ena in microchannels to understand the fundamental mechanisms involved in the boiling
process before attempting any modeling. More accurate models for the heat transfer co-
efficient will be obtained if the modeling efforts are concentrated on each particular flow
pattern. Therefore, flow regime maps with well defined flow patterns and transition lines

may facilitate the modeling efforts.

7.3 Recommendations

e A further investigation in the effect of the inlet velocity profiles on the entrance length
is suggested. At high Reynolds numbers, the dimensionless entrance length (L./d},)
is linearly proportional to the Reynolds number; thus, the entrance length becomes
independent of inlet velocity (Shah and London, 1978). On the other hand, at low
Reynolds numbers, the dependence of the entrance length on the inlet velocity profile

needs to be carefully considered.

e Use different working fluids (including air) and even smaller hydraulic diameters
than 200 um to identify a valid range for the applicability of macroscale theories to
microchannels for fully developed and developing conditions. Also, flow visualization
techniques should be used to study the transition from laminar to turbulent flow in

single-phase flows in microchannels.

e Since, single-phase cooling systems are unable to meet demands for increasing heat
load, an entropy generation minimization method is suggested in order to optimize
the thermal performance and increase the heat dissipation capacity on these cooling
systems. A multi variable optimization for channel depth, width, and wall thickness

in an entropy generation model is suggested.

e A further study in the ebullition cycle in microchannels is suggested. This might

require better control or elimination of the flow instabilities.
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e A creation of a data bank of flow patterns at different channel sizes in order to allow a
better identification of the transition lines in the flow regime maps. This might help
in the generation of new flow regimes maps which probably can be plotted against

different coordinates than the traditional superficial phasic velocities.

e Study the influence of the mass flux and channel size on the critical heat flux in order

to identify safe operation of the system.

e A further study on two-phase flow boiling with water as the working fluid under sub-
atmospheric pressure in order to have a suitable saturation temperature for cooling

of electronics and the effects of sub-cooling water in the heat transfer.
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Appendix A

Uncertainty Analysis

An uncertainty analysis of the experimental method, apparatus and data is performed
in the following sections. The uncertainties were comparable with other values reported
in the literature for microchannels. Typically, the uncertainty of calculated variables in
microscale measurements is high (e.g. friction factor, heat transfer coefficient 15 — 25 %)

due to error propagation.

A.1 Method

The procedure used for the uncertainty analysis is based on the method described by
Coleman and Steele (1989). Consider a general case in which a quantity R is determined

from a set of measured values, X;:

R = R(X1, X2, X3, ..., Xx) (A.1)

where each measured value X, has an associated uncertainty represented by the notation

0.X;, the effect of the uncertainty in X; on the result R is calculated by:

OR
SRy, = 50X, (A.2)
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where 0 Ry, refers to the uncertainty in R as a result of the uncertainty in the X; mea-

surement. Then the uncertainty in the result is given in general form as:

1/2
OR 2 OR 2 OR
SR = + { (a_xl(”(l) + (8—)(25)(2) +o+ (a—Xjaxj>} (A.3)

When R depends on a number of measured quantities and this dependence can be

expressed in the form:

R=X%Xx{x0 XN (A.4)

the overall uncertainty is determined from the uncertainties of each of the individual mea-

surements:
SR 65X\ 5X5\? 5X5\2 sx\2\
— =+ (== Cy—r’ Cyro ) 4ot [ Oy A5
i {(1X1>+(2X2)+<3X3 TR, (4.5)
The result of this equation is the overall uncertainty in R expressed as a percentage.

The following section describes the uncertainty associated with the instrumentation and

the method used in the measurements of each of the individual quantities.

A.2 Uncertainty in Measured Values

A.2.1 Temperature Measurements

All temperature measurements are performed using T-Type thermocouples and a Keithley
2700 data acquisition system. From the calibration specifications by Keithley (2001) the
accuracy of T-Type thermocouple measurements relative to a simulated junction, such as

the ice point cell used in these experiments, is:

oT 0.2°
— — 4+
T~ TPC

Q
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A.2.2 Heater Voltage

The voltage to the cartridge resistance heater embedded in the copper block is measured
using the Keithley data logger. For the range of voltages used in these tests, 5V < Vieater <
95V, the corresponding accuracy of the measurements from the calibration specifications

of the instrument (Keithley, 2001) are:

Vheater = £ (4.5 x 107° Reading + 9 x 107° Range) V] (A.7)

For the 100 V range, the resulting expression for the uncertainty is:

5Vheater

Vheater

(A.8)

9 x 1074V
:i(4.5><10_5+ - )

Vheater [V]

A.2.3 Heater Current

The current in the heater is calculated based on the voltage drop across a calibrated shunt

resistor:

VShunt
I = A.
u (A9)

The uncertainty in the heater current is calculated by:

51 sV N2 sr\2)
o shunt
f—i{<v;hm> +(%R)} (410

From the specifications for the data logger (Keithley, 2001) the uncertainty in the

voltage reading across the shunt resistor is:

6Vihunt = %= (3.0 x 107° Reading + 3.5 x 10~° Range) [V/] (A.11)

From the 100 mV range, the resulting expression for the uncertainty is :
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Figure A.1: Shunt resistance linear fit

o V;hunt
V;hunt

(A.12)

3.5 x 1076V
=+ (3.0 x 1077 + X—)

‘/shunt [V]

The resistance of the shunt was measured during a calibration procedure at the start of
the experimental tests. Using the Keithley data logger to measure current as the full range
of voltages were applied to the shunt (0 < Vipune < 25 mV), the resistance was calculated

based on a linear fit of the voltage versus current data shown in Figure

The uncertainty in the calculated resistance is determined by:

5R Vit \2 (0L \2 . (5L\2)

T4 shunt shunt v~ A.13

§R { < ‘/shunt ) * ( [shunt * L ( )
where the uncertainty associated with the liner fit of the data, dL/L, is the RMS %

difference between the linear fit and the data.
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5L
- = 4+0.02% = 40.0002 (A.14)

The uncertainty in the current measurement is calculated for a 3 A range by (Keithley,

2001)

(5[shunt

Ishunt

(A.15)

s 12x1074A
=+ (12x107° + =22 — =

[shunt [A]

Substituting Equations[A.12] [A.14] and[A.T5into Equation [A.13] the uncertainty in the

resistance at the lowest values of Vipyn = 1 mV and Igpyn = 0.1 A (where the uncertainty

is higher) is determined as:

% — 40.0043 (A.16)

Combining the uncertainties of the shut voltage and resistance, the current uncertainty

1S:

1/2
51 3.5 x 1076V \?
— =4 (3.0x107°+ —) + (0.0043)? A17

A.2.4 Pressure

Since the outlet of the microchannel is at atmospheric pressure, the absolute pressure drop
in the microchannel is measured using a Omega pressure sensor PX481A-060G5V located
at the inlet of the microchannel. For the lowest pressure drop, an Omega PX26-005GV
differential pressure sensor was used. These sensors convert the absolute pressure reading
to voltage signal that is measured by the Keithley data acquisition system. The pressure

drop reading is calculated using:
Ap ~ C“/vaESS’LLTC (A.18)
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where C is a constant correlation coefficient. The uncertainty in the pressure measurement

is determined by:

1/2
(5Ap . (50 2 + 5‘/pressure 2 (A 19)
Ap N C V};ressure '
The accuracy of the pressure gauge is determined from its calibration certificate:

570 = 40.2% of full scale for PX418A-060G5V (A.20)

oC
- = +1% of full scale for PX26-005GV (A.21)
Full scale for the transducer PX418A-060G5V is 60 psi = 4.1369 x 10° Pa and for the
PX26-005GV is 5 psi = 3.4474 x 10* Pa

27.38P
00 | BT8P a X418A-060G5V (A.22)
C p[Pal

6C _ | 344.74Pa

— = for PX26- \Y A2
e [Pal or 6-005G (A.23)

For the 10V range used by the data logger for reading the PX418A-060G5V transducer

output signal, the corresponding uncertainty is:

5 ressure —
WVpressure _ (3.0 x 107° + (A.24)

‘/;77"688’[],7’8

% 10‘5V)
‘/pressure [V]

Based on these expressions, the uncertainty in the pressure readings for the for the

PX418A-060G5V sensor can be calculated by:

1/2
§Ap (827.38Pa)2 ( . 5x 1079V )2
— =4 — | +(30x107° 4+ —— A .25
Ap { p[PCl] V;oressure[v] ( )
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For the 0.1 V' range used by the data logger for reading the PX26-005GV transducer

output signal, the corresponding uncertainty is:

5‘/;)ressure - 4 (30 % 1075 + <A26>

‘/pressure

35 x 105V>
V;)ressure [V]

Based on these expressions, the uncertainty in the pressure readings for the for the

PX26-005GV sensor can be calculated by:

1/2
5Ap (344.741%)2 ( . 35X 10—5V)2
= () +(30x107°+ A27
Ap { oPd VorconelV] (420)

The Viessure 1 related to pressure for the PX418A-060G5V and PX26-005GV sensor
by:

(Ap[Pa] n )
4.
Viressure = 689 Ig , for PX418A-060G5V (A.28)
and for the PX26-005GV by:
p[Pal

= —— for PX26- A2
V;)ressure 639470 or 6-005GV ( 9)

A.2.5 Properties

Properties of water (liquid and vapor) were determined based on correlations of tabulated
values as function of temperature presented by Lemczyk and Molloy| (1995) and Babcock
and Wilcox| (1992). The correlations deviate from the tabulated values by less than 0.4 %.

Therefore, the uncertainty in the fluid properties is:

P
OProperty _ oy 10-3 (A.30)
Property
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A.2.6 Channel Dimensions

The uncertainty in the microchannanel width and depth were estimated based on twice

the standard deviation (20) of several measurements taken with a surface tester as:

e Microchannel 1: width 241 &+ 9.6 (3.9 %), depth 198 £ 9.3 (4.7 %). Therefore:

sa 9.6 sb 9.3
= = 0039 = e = H0.047 (A.31)

e Microchannel 2: width 471 + 13.4 (2.8 %), depth 378 £ 1.6 (0.42 %). Therefore:

da 134 ob 1.6
w Tl £0.028 B 38 £0.004 (A.32)

See Appendix [D| for detailed data.

The channel length was measured using an electronic digital caliper with a resolution
of 6L = £0.005 mm. Since, the channel length is L = 21.9 mm, the uncertainty in the

channel is:

0L  0.005
— = —— = +0.00022 A.
7 519 0.000228 (A.33)

A.2.7 Time

The timer function in the Excelink data acquisition program is used to access the com-
puter’s system clock and record time values. The timer function has a 1 ms resolution;

therefore the uncertainty in the time value is:

6t _ 5% 107"

T =t (A.34)
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A.3 Uncertainty in Calculated Quantities

A.3.1 Mass flow, m

The volumetric flow rate in the microchannel was measured using a Harvard Apparatus
PHD2000 syringe pump and a McMillan Co. micro-turbine flow sensor for low and high

flow rates respectively.

e Syringe pump 1 < @ < 15 ml/min

The accuracy of the syringe pump was determined from its calibration certificate as
dQ=0.0002106 ml/min for 150 ml plastic syringe. The mass flow can be expressed

in terms of the volumetric flow rate as:

Mm=Q%p (A.35)

Therefore the uncertainty in the mass flow rate can be calculated as:

ER (IR ) S

The highest uncertainty in the flow rate is expected at the lowest flow rate. Therefore,
substituting the uncertainty of the volumetric flow rate 6¢Q = 0.0002106 ml/min, the
flow rate @ = 1 ml/min, and the uncertainty of the density (Equation [A.30)), the

lowest uncertainty for the flow rate reduces to d7/m = £0.004

e Micro gear pump 15 < @ < 64 ml/min

For this range, the syringe pump was replaced for a micro gear pump and the flow
rate was measured using a McMillan Co. micro-turbine flow sensor with uncertainty
0@ = 0.4 ml/min. Therefore with this setup, the maximum uncertainty in the flow

rate is determined as dr/m = £+0.027.
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A.3.2 Channel cross sectional area, A

The cross sectional area of the channel is the product of the channel width and height.

A=ab (A.37)

Therefore, the uncertainty in the cross sectional area of the channel is:

R (ONOI

Substituting the uncertainty in the channel dimensions (Equations|A.31|and [A.32)) into
Equation then:

% = £(0.061 and 0.029) (A.39)

On Equation 0.061 and 0.029 corresponds to the smallest and biggest channel

respectively.

A.3.3 Channel surface area, A,

The channel surface area can not be expressed in terms of a product of its variables.
Therefore, Equation can not be used to calculate the uncertainty. For these cases the

uncertainly can be calculated using the general form given in Equation [A.3]

A, = (a+2b)L (A.40)
/2
0A. \? [9A. \? [0A. \?)'
6A5:i{(aa 5a) +<8b 6b) +(8L 5L) } (A1)
04, 94, A,
Seop TEeal S—atd (A.42)
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Substituting Equation into Equation

5A, =+ {(Lda)? + (2Lb)* + [(a + 26)0 L2} (A.43)
The relative uncertainty can be obtained dividing Equation by A, then:
1/2
5A L 2 2L > T(a+2b) .17
= | ——F —————0b ——— 0L A.44
A, H(H%)L a] * [(a+2b)L 1 * [(a+2b)L 1 (A-44)

Rearranging terms in Equation [A.44] the uncertainty in the channel surface area can

be expressed as:

(G () o

Substituting the channel uncertainties and dimensions in Equation the uncer-

tainty in the channel surface area is 3.3 % and 1.1 % for the smaller and larger channel

respectively.

A.3.4 Channel perimeter, P

The perimeter of the channel is defined as:

P =2(a+b) (A.46)

After using the general form (Equation [A.3) and rearrangement of terms:

TG ) e

The uncertainties in the channel size (da/a, §b/b) can be obtained from Equations
and [A.32]
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A.3.5 Hydraulic diameter, dj

The hydraulic diameter is defined as:

B 4A B 2ab

d —
"TP T atb

(A.48)

After using the general form (Equation |[A.3]) and rearrangement of terms, the uncer-

tainty in the hydraulic diameter is:

po{@) ) e

The uncertainties in the channel dimensions can be obtained from Equations and
[A.32]

A.3.6 Mass flux, G

G = (A.50)

e{-eyy

where the uncertainty of the mass flow and channel cross sectional area can be obtained

from Equation [A.36] and Equation respectively.

| 3

A.3.7 Reynolds number, Re

Re = o " arbn (A.52)

After applying the general form (Equation [A.3) and rearrangement of terms:

e (o () () @)

where, 071 /1 can be obtained from Equation
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A.3.8 Heat flux, q,

e Single-phase: The heat flux during single-phase testing was calculated from:

mcp(Tout - E )
A

qQuw = (A54)

After applying the general form (Equation |A.3)) and rearrangement of terms:

5& - 4 5_m ? + 5& 2 + Tout 6Taut 2
Gu m Cp Tout_ﬂ Tout
1/2
T; 0T ]® | (A
o) 7] (o) } (459

where 0A;/A; can be obtained from Equation

e Two-phase flow: The heat flux in the microevaporator is defined as:

Q fluid
y = L A.
q A, ( 56)

where the heat removed by the fluid (Q fiu:q4) is determined by:

Qfluid = Qtotal - Qloss (Tw) = Qtotal - [m(Tw) + b] (A57)

The total heat transfer rate Q. is calculated base on the heater voltage and shunt

voltage and resistance according to:

Vea er‘/; un
Qtotal: b t§R huunt <A58)

Therefore, the heat transfer rate by the fluid Q) is:

Qf _ [(Vheate;‘RV;hunt) _ (mTw + b):| (A59)

160



Neglecting the uncertainties in the slope m and intercept b, and applying the general

form (Equation [A.3)), the uncertainty in the heat removed by the fluid reduces to:

‘/s un 2 Vi eater ?
5Qf = =+ { |:< ;]L% t) 5Vheat6r:| + |:( h%t )5‘/:9hunt:|

1/2
VS umn V eater 2
+ K%) 5%} + [m&Tw]Q} (A.60)

Dividing Equation by @y, the relative uncertainty in the heat rate for two-phase

flow is:
( 2 2
% - 4 ) 1 5Vheater + 1 6‘/;hunt
Qf 1 — (mTw + b)m Vheater . (mTw + b)% V:@hunt
\ ‘/shuntvheater Vjshuntvheater
r 2
N 1 oR
. (mT, +b)R | R
‘/shunt Vheater
_ 24 1/2
1 0T,
= A.61
* V:shuntvheater ] b Tw ( )
| rmT, mT,

The relative uncertainty in the heat flux ¢, can be calculated from:

8qw = £ { <5%)2 + <5is>2}1/2 (A.62)

The uncertainly in the rate of heat ()f, heater voltage, shunt voltage, resistance,

channel wall temperature, and channel surface area can be obtained from Equations

[A.61], [A.8] [A.12], [A.13] [A.6, and [A.45] respectively.
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A.3.9 Heat transfer coefficient, h

e The local heat transfer coefficient for two-phase flow was calculated as:

 Q
hep = Tt (A.63)

After applying the general form (Equation |A.3)) and rearrangement of terms:

Sh 5qw \ > T, 5T, 1? T 5T 12

tp w w w sat sat

— =+ — A.64
htp { < Gu > * |:<Tw - Tsat) Tw :| i |:(Tw - Tsat) Tsat :| } ( )
The uncertainty in the heat flux, wall and saturated temperature can be obtained

from Equations[A.62] [A.6] and respectively.

e The uncertainty in the local heat transfer coefficient for single-phase can be obtained
from Equation just substituting the saturated temperature Ty, with the fluid
temperature 7y and using Equation to estimate the uncertainty in the heat

ux.

6h 5q 2 T (ST 2 T 5T 9 1/2
P — %w w ” )y )

hSp _i{(Qw) + |:(Tw—Tf> Tw] + {(Tw—Tf) Tf:| } <A65)

A.3.10 Nusselt number, Nu

e The local Nusselt number for single-phase was defined as:

_ hd,

Nu—= —" (A.66)
ky

After applying the general form (Equation |[A.3)) and rearrangement of terms:

SNu ShoN® ed\® ok A\2)"
ovu _ 4 sp 2% 2 A.
Nu {(hsp>+(dh)+<kf>} (A67)
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The uncertainties in the local heat transfer coefficient for single-phase, the hydraulic

diameter, and the thermal conductivity of the fluid can be obtained from Equations

[A.65] and respectively.

e The average Nusselt number for single-phase between the entrance of the channel

and a location z was defined as:

Ny, = (A.68)

The average heat transfer coefficient was defined as:

N Go—x
= A.
e = 255 (4.69)

where ¢,_, is the heat flux and AT}, is the logarithmic mean temperature difference cal-

culated as:

_ ey (Ty = Tin)
Goe = (o 3s (A.70)
ATEn _ (Tw — Tf) _ (Tw —T; ) (A?l)

T, — Ty
Y4 —_— J
n(Tw_Ti )

The temperature of the fluid T at any location along the channel was estimated based

on the inlet and outlet temperature as:

Tou - T;
7y = W = o) i )y 1, (A.72)

After applying the general form (Equation |[A.3)), the uncertainty in the average Nusselt

number can be expressed as:

5N o N® s\ fok\2)
e <_H) + (—h) + (—f) (A.73)
Nuy_y ho—z dp, kf

163




Assuming that the uncertainty of the logarithmic mean temperature is approximately
0T/T (shown in Equation [A.30)), the uncertainty in the average Nusselt number can be

expressed as:

SNy, s\  [dc,\” T 5T 1? T, 5T 1?
— ~ =+ — + _p + f f +
Nug_y m Cp Tf_ﬂ Tf Tf_ﬂ T;
1/2
SAN®  (0T\?  [odn\? [ 0ks\’
— = —1 A.74
+(As)+(T>+<dh)+<kf> (A.74)

The uncertainties in the mass flow, properties and temperature of the fluid, hydraulic

diameter, and channel surface can be obtained from Equations [A.6], [A.30] |A.36], [A.45, and
[A.49]

A.3.11 Friction factor, f

The single-phase friction factor was defined as:

_ Apdy _ App
LpV? — Lim?

(ab)’
a+b

f (A.75)

After applying the general form (Equation [A.3) and rearrangement of terms:

Sf SAp\®  [6p\°  [6L\’ o\ >
A a2 r ol 92"
S { ( Ap ) i ( o) T\T) T\
2a+ 30\ 612 [(3a+2b\ b2
- = A.T6
RO 70
The uncertainties in the pressure, density, and mass flow can be obtained from Equa-

tions [A.25] [A.30] and respectively. The uncertainties in the channels dimensions can
be obtained from Equations A.33|
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A.3.12 Vapor quality, x

The vapor quality at the exit of the channel was calculated based on an energy balance as:

1 1Q
Tr = h_fg Ef - Cp(Tsat — ﬂ ) <A77)

After applying the general form (Equation |[A.3)) and rearrangement of terms, the un-

certainty of the vapor quality reduces to:

r 2 2
ox = + <5hf9 > ? + 1 5Qfluid + 1 om
z g 1_ MCy(Toat — Tin) Q fruid 1_ mcy(Lsat — Tin) 1™
\ Qfluid Qfluid
_ 9 )
+ 1 % + Cstat 5Tsat
Q fluid Cp Q fruid Tsat
s - 1 . - Cp(Tsat - T‘z )
L mcp(Tsat - T’z ) m
- 2\ 1/2
Tin oT;
g @ — (A.78)
R

The uncertainties in the heat removed by the fluid, heater voltage, shunt voltage,
resistance, fluid properties, and mass flow can be obtained from Equations [A.61] [A.§]
[A.12] [A.13] [A.30], and respectively.
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Appendix B

Detailed Drawings of

Microevaporator Assembly Unit
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Appendix C

Finite Element Models and Thermal

Conductivity Measurements

C.1 Finite Element Models, FEMs

In order to measure the thermal conductivity of the oxygen free copper in accordance with
ASTM Db5470, the gradient of temperature along the sample (rectangular bar 13x14x53
mm) was measured using six thermocouples located at different isothermal planes. The
FEM shown in Figure was used to assist in the locations of the isothermal planes.

Based on the FEM the thermocouples were equally spaced at 6 mm.

Similarly, the location of the thermocouples were also determined using a FEM for the
cartridge heater and microevaporator as shown in Figure|[C.2] There are three thermocou-

ples located at the heater block and five in the microevaporator.
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C.2 Thermal conductivity

The thermal conductivity of the oxygen free copper was recorded for different temperatures
(50, 70, 90, 110 and 120 °C') in a vacuum chamber. In order to evaluate the thermal
conductivity using the ASTM D5470, measurements of the heat flow through the sample
and the gradient of temperature are required. Figure shows the heat added and
removed from the sample (@), the joint temperature (Tjyne: temperature at the middle of
the sample length), and the thermal conductivity as a function of time. The final value of

the thermal conductivity is acquired when steady state is reached.

A typical gradient of temperature along the sample (temperature vs position) is shown
in Figure[C.4]for the 90°C' case. Three straight lines are observed, the middle one represents
the gradient of temperature in the sample (oxygen free copper), and the others are for the
calibrated blocks (with known thermal conductivities) used to estimated the heat input
and output during the experiment. The step in the straight lines represents the contact

resistance between the sample and the calibrated blocks.

Table summarizes the data collected to calculate the thermal conductivity for all

cases.
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Figure C.4: Gradient of temperature in sample and calibrated blocks (case 90 °C)
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Table C.1: Thermal conductivity measurement

Cool bath, °C | Load, psi | Q,,perr W | Qiowers W | Tang, °C | k, W/mK
15.0 39.2 16.2 15.8 50.2 377.6
15.0 39.2 16.3 15.8 20.5 383.6
20.0 39.1 13.7 13.3 50.0 389.1
30.0 39.1 9.2 9.0 50.1 380.9
30.0 39.4 9.2 8.7 49.9 380.4
30.0 39.6 18.7 18.1 70.7 388.4
30.0 40.9 28.2 27.1 90.8 390.3
40.0 40.9 279 26.5 100.2 387.8
50.0 40.6 28.0 26.4 110.3 381.0
70.0 40.0 23.7 22.2 120.8 377.8
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Appendix D

Channel Size Measurements
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Appendix E

Fluid Properties Correlations

All properties are determined based on correlations of tabulated data from Lemczyk and
Molloy| (1995) and Babcock and Wilcox| (1992)). The properties of the water are expressed

as a function of the temperature 7', valid for a temperature range between 273 and 400 K.

E.1 Thermal conductivity, k£ (W/mK)

a=—2.76131
b=3.40118 x 10~*
c=—8.38245 x 1077

k=a+bTY2+¢T

E.2 Specific heat, ¢, (J/kgK)

a = 3.80507 x 10°
b= —1.02808 x 10°
c=1.11160 x 10°
d = —6.00526 x 10?
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e = 1.62081 x 10?
f=—1.7482

cp=a+bTY? + T +dT3? + eT? + fT5/?

E.3 Density, p (kg/m?)

a = —3.42584 x 10?
b= 1.64103 x 102
c = —5.01225

p=a+bl""?+cT

E.4 Dynamic viscosity, u (Pa.s)

a = 3.16371 x 10!
b= —6.37804
c=4.85827 x 107!
d=—1.65190 x 1072
e=2.11278 x 10~*

3 =a +bTY? + T + dT?? + eT?

E.5 Saturation temperature, T}, (°C)

A correlation for the saturation temperature as a function of the pressure was obtained

from the tabulated data shown in Table [E. 1]
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a = 4.63501 x 10!
b=2.78155x 107!

Toor = an

In this correlation, the pressure P is in psia and the saturation temperature Ty, in
degree Celsius, °C'. This correlation is valid for a range of pressure between 2.6 and 174
psia. These units were more convenient for the pressure transducers and data acquisition

program.

Table E.1: Saturation temperature vs pressure (Babcock and Wilcox] 1992)

Pressure, MPa | Ty, K | Pressure MPa | T, K
0.0180 330.96 0.1600 386.47
0.0200 333.22 0.1800 390.09
0.0250 338.12 0.2000 393.38
0.0300 342.26 0.2500 400.59
0.0400 349.02 0.3000 406.70
0.0500 354.48 0.4000 416.78
0.0600 359.09 0.5000 425.01
0.0800 366.65 0.6000 432.00
0.1000 372.78 0.8000 443.59
0.1013 373.14 1.0000 453.06
0.1200 377.96 1.2000 461.14
0.1400 382.46
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E.6 Liquid, hy and vapor, i, enthalpy and latent heat
of vaporization, hs, (kJ/kg)

The following correlations for the enthalpy of the water in liquid and vapor phase, and
the latent heat of vaporization where obtained from the tabulated data shown in Table
[E.2] In these correlations the temperature T is in °C and the enthalpy and latent heat of

vaporization is in kJ/kg. The valid range for this correlations is for 16 < 7" < 188 °C.

e Enthalpy of liquid

a=5.18384 x 1074
b=4.13514
c=8.33566 x 107!

hy=aT?+bT +c

e Enthalpy of vapor

a= —3.30874 x 1073
b = —2.05899
c = 2.49498 x 10°

hy = aT?+bT + ¢

e Latent heat of vaporization

a= —2.79036 x 1073
b=2.076143
c = 2.49581 x 10°

hiyg = aT?+bT + ¢ or hg = hg — hy.
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Table E.2: Enthalpy and latent heat vs temperature (Babcock and Wilcox, [1992)

Temperature, °C | hy, kJ/kg | hy, kJ/kg | hyy, kJ/kg
15.84 65.5 2530.0 2464.5
17.50 72.4 2533.0 2460.6
21.08 87.5 2539.6 2452.1
24.08 100.1 2545.1 2445.0
28.97 120.7 2553.9 2433.2
32.88 137.2 2561.0 2423.8
36.16 151.0 2566.6 2415.6
41.51 173.7 2576.5 2402.8
45.81 191.8 2584.2 2392.4
49.42 207.1 2590.6 2383.5
52.55 220.3 2596.1 2375.8
55.32 231.9 2601.0 2369.1
57.81 242.4 2605.3 2362.9
60.07 251.9 2609.3 2357.4
64.97 272.6 2617.7 2345.1
69.11 289.9 2624.8 2334.9
75.87 318.3 2636.3 2318.0
81.33 341.3 2645.4 2304.1
85.94 360.6 2653.0 2292.4
93.50 392.3 2665.3 2273.0
99.63 418.0 2675.0 2257.0
99.99 419.5 2675.6 2256.1
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Table Enthalpy and latent heat vs temperature (Babcock and Wilcox, 1992)
(cont)

Temperature, °C | hy, kJ/kg | hy, kJ/kg | hyy, kJ/kg
104.81 439.7 2683.1 2243.4
109.31 458.6 2690.0 2231.4
113.32 475.5 2696.0 2220.5
116.94 490.8 2701.4 2210.6
120.23 504.7 2706.2 2201.5
127.44 535.2 2716.5 2181.3
133.55 561.2 2724.9 2163.7
143.63 604.3 2738.1 2133.8
151.86 639.8 2748.2 2108.4
158.85 670.1 2756.4 2086.3
170.44 720.7 2768.7 2048.0
179.91 762.5 2777.6 2015.1
187.99 798.5 2784.4 1985.9
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Appendix F

Heat Loss Correlations for

Microevaporators

In this appendix, the correlations for the heat loss from the test section as a function of

the channel wall temperature are shown.
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F.1 Microchannel

Qloss' w
w

Qioss (T,) =0.0878 (T,,) - 2.4597
R2 = 0.9757

0 , [ |
20 40 60 80 100

Figure F.1: Heat losses vs channel wall temperature, 1 ml/min (G ~ 350 kg/m?s)

Qloss' w

Qyoss(T,) = 0.0978 (T,) - 3.1415
R2=0.9676

0 . , | | |
40 50 60 70 80 90 100
T,, °C

Figure F.2: Heat losses vs channel wall temperature, 2 ml/min (G ~ 700 kg/m?s)
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Figure F.3: Heat losses vs channel wall temperature, 3 ml/min (G & 1050 kg/m?s)
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Figure F.4: Heat losses vs channel wall temperature, 3.8 ml/min (G ~ 1300 kg/m?s)
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F.2 Minichannel

10
9 o
8 |
7 |
2 6|
S 2
4 |
> QIoss(Tw) =0.1326 (Tw) - 4.5159
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Figure F.5: Heat losses vs channel wall temperature, 4 ml/min (G = 350 kg/m?s)
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Figure F.6: Heat losses vs channel wall temperature, 8 ml/min (G ~ 700 kg/m?s)

196



14

12 -

10 1
= 8
(@4 6 |

41 Qysc = 0.1836 (T,,) - 7.0837

R2 = 0.9686
2 .
0 1 1 1
40 60 80 100 120

T,, °C

Figure F.7: Heat losses vs channel wall temperature, 12 ml/min (G ~ 1050 kg/m?s)
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Figure F.8: Heat losses vs channel wall temperature, 15 ml/min (G = 1300 kg/m?s)
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Appendix G

Experimental Data

G.1 Single-phase friction factor for 198 x 241 um mi-

crochannel after pressure drop correction
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Table G.1: Results for single-phase friction factor

Mass flux, kg/m 2 Re Pressure drop, kPa f Uncertainty, of/f
348 85 3.6 0.147 0.28
696 167 8.3 0.085 0.19
1043 251 12.6 0.057 0.17
1391 335 16.1 0.041 0.17
1739 419 21.2 0.035 0.16
2087 503 25.5 0.029 0.16
2434 588 30.4 0.025 0.16
2782 686 335 0.021 0.16
3130 758 40.4 0.020 0.16
3130 759 39.8 0.020 0.16
3478 843 45.6 0.019 0.16
3825 928 50.9 0.017 0.16
4173 1013 55.2 0.016 0.16
4521 1098 61.2 0.015 0.16
4869 1183 68.7 0.014 0.16
5216 1268 75.2 0.014 0.16
5564 1353 81.1 0.013 0.17
5912 1440 89.1 0.013 0.17
6260 1525 95.2 0.012 0.17
5949 1521 93.2 0.013 0.17
6288 1608 103.1 0.013 0.17
6776 1730 117.1 0.013 0.17
6763 1724 117.8 0.013 0.17
7396 1826 134.4 0.012 0.17
7387 1880 134.6 0.012 0.17
8030 1996 151.9 0.012 0.16
8348 2074 172.0 0.012 0.16
8742 2182 178.1 0.012 0.16
9024 2257 188.0 0.011 0.16
9154 2294 197.6 0.012 0.16
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Table : Results for single-phase friction factor (cont)

Mass flux, kg/m 2 Re Pressure drop, kPa f Uncertainty, of/f
9642 2420 214.7 0.011 0.16
10158 2550 236.9 0.011 0.16
9769 2452 219.5 0.011 0.16
9238 2315 205.2 0.012 0.16
4883 1240 66.5 0.014 0.16
5261 1332 75.7 0.014 0.17
5622 1421 88.7 0.014 0.17
6259 1580 109.8 0.014 0.17
7156 1807 132.9 0.013 0.17
6707 1694 123.3 0.014 0.17
7604 1923 144.2 0.012 0.17
7823 1980 149.8 0.012 0.16
8059 2040 167.1 0.013 0.16
8364 2118 175.5 0.012 0.16
8744 2216 188.7 0.012 0.16
8877 2250 190.2 0.012 0.16
9078 2304 194.4 0.012 0.16
9570 2433 209.9 0.011 0.16
9164 2334 195.6 0.012 0.16
5659 1445 82.2 0.013 0.17
5213 1333 71.2 0.013 0.16
4866 1241 65.7 0.014 0.16
4518 1152 58.4 0.014 0.16
4171 1063 54.0 0.015 0.16
3823 975 48.4 0.016 0.16
3477 861 42.0 0.017 0.16
3129 785 39.1 0.020 0.16
2781 708 33.8 0.022 0.16
2433 630 29.2 0.024 0.16
2260 557 26.6 0.026 0.16
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Table [G.1} Results for single-phase friction factor (cont)

Mass flux, kg/m ?s Re Pressure drop, kPa f Uncertainty, of/f
1912 471 22.1 0.030 0.16
1565 385 18.4 0.037 0.17
1217 300 14.2 0.047 0.17
869 214 10.1 0.066 0.18
522 128 6.3 0.115 0.20
243 60 3.2 0.266 0.30

G.2 Average Nusselt numbers for 198 x 241 um mi-

crochannel (isothermal boundary condition)

The experimental Nusselt numbers in Figure correspond to Reynolds numbers between

190 and 2660 and Prandtl numbers between 3.8 and 5. However, the results in this table

are for Re = 198 and Pr = 3.8 since a wide range of the experimental Graetz number is

coverd with this condition.
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Table G.2: Results for Nusselt number for single-phase (Re = 198, Pr = 3.8)

sqrt(Gz ™) Nu Uncertainty, §Nu/Nu
0.08 47.7 0.29
0.10 321 0.20
0.11 24.3 0.15
0.13 19.7 0.12
0.14 16.6 0.11
0.15 14.4 0.10
0.16 12.7 0.09
0.17 114 0.08
0.18 104 0.08
0.19 9.6 0.07
0.20 8.9 0.07
0.20 8.3 0.07
0.21 7.8 0.07
0.22 7.4 0.07
0.23 7.0 0.06
0.23 6.7 0.06
0.24 6.4 0.06
0.25 6.2 0.06
0.25 5.9 0.06
0.26 5.8 0.06
0.26 5.6 0.06
0.27 54 0.06
0.28 5.3 0.06
0.28 5.2 0.06
0.29 5.0 0.06
0.29 49 0.06
0.30 4.9 0.06
0.30 4.8 0.06
0.31 4.7 0.06
0.31 4.7 0.06
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Table [G.2} Results for Nusselt number for single-phase (Re = 198, Pr = 3.8) (cont)

sqrt(Gz ™) Nu Uncertainty, §Nu/Nu
0.32 4.6 0.06
0.32 4.6 0.06
0.33 4.6 0.06
0.33 4.5 0.06
0.34 45 0.06
0.34 45 0.06
0.35 4.6 0.06
0.35 4.6 0.06
0.36 4.6 0.06
0.36 4.7 0.06
0.37 4.8 0.06
0.37 4.8 0.06
0.37 49 0.06

G.3 Vapor and liquid slug positions and lengths

Table G.3: Slug position microchannel 198 x 241 pum (10 watts, 1 ml/min, video capture
20000 fps)

Xot, #M XL at, #M | Frame [Length, gm | Time, us

0.0 309.7 92781 309.7 0.0
189.3 533.4 92791 344.1 0.5
387.1 7915 92801 404.4 1.0
559.2 1041.0 92811 481.8 1.5
731.2 1299.1 92821 567.9 2.0
877.5 1574.4 92831 696.9 2.5
1041.0 1858.3 92841 817.3 3.0
1178.6 2125.0 92851 946.4 35
1299.1 2408.9 92861 1109.8 4.0
1436.7 2701.4 92871 1264.7 4.5
1540.0 3002.5 92881 1462.5 5.0
1634.6 3286.4 92890 1651.8 55
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Table G.4: Slug position microchannel 198 x 241 um (15 watts, 1 ml/min, video capture

20000 fps)

Table G.5: Slug position microchannel 198 x 241 um (22.5 watts, 1 ml/min, video capture

20000 fps)

Xot, #M XL at,» #m [ Frame |Length, gm | Time, us

0.0 478.0 196200 478.0 0

111.6 653.6 196202 542.0 0.1
215.2 948.5 196204 733.3 0.2
302.9 1259.4 196206 956.5 0.3
395.5 1650.0 196208 1254.5 0.4
486.2 2136.1 196210 1649.9 0.5
613.7 2765.8 196213 2152.1 0.65

Xot, 4M XL at, #m | Frame |Length, gm | Time, us
0.0 967.9 30028 967.9 0
70.1 1184.7 30029 1114.6 0.05
139.4 1370.5 30030 1231.1 0.1
216.8 1633.8 30031 1417.0 0.15
302.0 1835.1 30032 1533.1 0.2
356.0 2129.3 30033 1773.3 0.25
433.0 2446.8 30034 2013.8 0.3
472.0 2787.4 30035 2315.4 0.35
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Table G.6: Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture
20000 fps, vapor slug #1)

Xot, #M XL at,» #m [ Frame | Length, gm | Time, us

0 867.5 44083 867.5 0.0
187.6 1078.5 44088 890.9 0.3
375.1 1277.7 44093 902.6 0.5
562.7 1477.0 44098 914.3 0.8
750.2 1688.0 44103 937.8 1.0
937.8 1887.3 44108 949.5 1.3
1125.3 2098.3 44113 973.0 1.5
1312.9 2297.6 44118 984.7 1.8
1500.5 2508.6 44123 1008.1 2.0
1688.0 2707.9 44128 1019.9 2.3
1875.6 2907.1 44133 1031.5 2.5
2063.1 3118.1 44138 1055.0 2.8
2250.0 3317.0 44143 1067.0 3.0
2450.0 3516.7 44148 1066.7 3.3
2649.2 3716.0 44153 1066.8 3.5
2837.0 3927.0 44158 1090.0 3.8
3036.1 4138.0 44163 1101.9 4.0
3223.6 4337.3 44168 1113.7 4.3
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Table G.7: Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture
20000 fps, vapor slug #2)

Xot, #M XL at,» #m [ Frame | Length, gm | Time, us

0 890.9 44269 890.9 0.0
187.6 1101.9 44274 914.3 0.3
375.1 1312.9 44279 937.8 0.5
562.7 1523.9 44284 961.2 0.8
761.9 1723.2 44289 961.3 1.0
961.2 1934.2 44294 973.0 1.3
1172.0 2145.0 44299 973.0 1.5
1383.2 2356.1 44304 972.9 1.8
1594.2 2578.9 44309 984.7 2.0
1781.8 2789.9 44314 1008.1 2.3
1969.3 3012.6 44319 1043.3 2.5
2168.6 3223.6 44324 1055.0 2.8
2356.2 3434.6 44329 1078.4 3.0
2532.0 3645.6 44334 1113.6 3.3
2731.3 3856.6 44339 1125.3 3.5
2930.6 4079.4 44344 1148.8 3.8
3129.9 4278.6 44349 1148.7 4.0
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Table G.8: Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture
20000 fps, vapor slug #3)

Xot, 4M XL at, #m | Frame | Length, gm | Time, us

0 1008.1 44358 1008.1 0.0
199.3 1207.4 44363 1008.1 0.3
375.1 1406.7 44368 1031.6 0.5
574.4 1617.7 44373 1043.3 0.8
762.0 1817.0 44378 1055.0 1.0
949.5 2028.0 44383 1078.5 1.3
1148.8 2227.4 44388 1078.6 1.5
1336.3 2438.2 44393 1101.9 1.8
1523.9 2637.5 44398 1113.6 2.0
17115 2848.5 44403 1137.0 2.3
1910.7 3059.5 44408 1148.8 25
2110.0 3270.5 44413 1160.5 2.8
2297.5 3493.2 44418 1195.7 3.0
2508.6 3704.2 44423 1195.6 3.3
2719.6 3950.4 44428 1230.8 35
2942.3 4173.1 44433 1230.8 3.8
3141.6 4407.6 44438 1266.0 4.0

207



Table G.9: Slug position microchannel 198 x 241 um (11 watts, 2 ml/min, video capture
20000 fps, vapor slug #4)

Xot, #M XL at, #m | Frame | Length, gm | Time, us

0 1734.9 44440 1734.9 0.0
187.6 1957.6 44445 1770.0 0.3
375.1 2156.9 44450 1781.8 0.5
562.7 2379.6 44455 1816.9 0.8
750.2 2590.6 44460 1840.4 1.0
937.8 2801.6 44465 1863.8 1.3
1125.3 3012.6 44470 1887.3 1.5
1324.6 3223.6 44475 1899.0 1.8
1512.1 3434.6 44480 1922.5 2.0
17115 3645.6 44485 1934.1 2.3
1899.0 3856.6 44490 1957.6 25
2086.6 4079.6 44495 1993.0 2.8
2285.8 4290.4 44500 2004.6 3.0
2450.0 4454 5 44504 2004.5 3.2
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Table G.10: Slug position microchannel 198 x 241 um (12 watts, 2 ml/min, video capture
20000 fps)

Xot, #M XL at,» #m | Frame | Length, gm | Time, us

0 892.2 166124 892.2 0.0
188.5 1093.3 166129 904.8 0.3
402.1 1319.5 166134 917.4 0.5
590.0 1520.5 166139 930.5 0.8
779.0 1721.0 166144 942.0 1.0
967.6 1935.2 166149 967.6 1.3
1168.0 2136.0 166154 968.0 1.5
1357.0 2350.0 166159 993.0 1.8
1558.0 2563.6 166164 1005.6 2.0
1784.4 2777.2 166169 992.8 2.3
1985.0 2990.8 166174 1005.8 2.5
2186.0 3217.0 166179 1031.0 2.8
2375.0 3443.0 166184 1068.0 3.0
2576.0 3644.0 166189 1068.0 3.3
2777.2 3857.9 166194 1080.7 3.5
2965.7 4059.0 166199 1093.3 3.8
3166.8 4285.2 166204 1118.4 4.0
3367.8 4486.2 166209 1118.4 4.3
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G.4 Bubble diameter

Table G.11: Bubble diameter microchannel 198 x 241 pum

Flow rate, ml/min | Heat, W | Bubble diameter, zm
1 10 230
15 73
20 65
2 10.5 96.7
15 72.5
20 71
35 41
40 39
3 12 61
15 41
19 31
20 30
26 20
3.8 17 40
18 48
19 39
22 41
24 31
26 41
30 43
40 30
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G.5 Number of active cavities

Table G.12: Active cavities microchannel 198 x 241 um

Flow rate, ml/min

Heat, W

Number of active cavities

1

6

2

7

10

10

10.5

20

25

30

35

40

26

35

40

3.8

40

45

AlWWININON|IFRP|IFP|IFP|FPINOIW
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G.6 Two-phase flow pressure drop and channel wall

temperature

Table G.13: Pressure drop microchannel 198 x 241 pum, mass flux G ~ 340 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k_Pa

kPa psi

63 75.3 2.7 0.4
69 79.6 2.5 0.4
80 85.6 2.4 0.3
95 83.0 2.7 0.4
110 88.9 2.5 0.4
120 94.4 2.5 0.4
200 99.0 3.3 0.5
264 99.7 3.8 0.6
401 101.7 6.3 0.9
604 103.3 10.1 1.5
740 104.1 10.1 1.5
947 105.5 13.7 2.0
946 105.6 13.9 2.0
1116 107.2 18.1 2.6
1238 115.9 32.7 4.7
1241 115.5 394 5.7
1242 131.2 32.4 4.7
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Table G.14: Pressure drop microchannel 198 x 241 pum, mass flux G ~ 680 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k.P 2

kPa psi
76 72.7 5.8 0.8
147 77.8 5.6 0.8
207 85.1 5.5 0.8
244 89.6 5.3 0.8
295 92.7 5.4 0.8
312 95.0 5.3 0.8
338 97.1 5.3 0.8
397 98.3 5.1 0.7
488 100.5 6.6 1.0
593 101.3 7.2 1.0
592 101.5 7.5 11
590 101.7 7.7 1.1
727 102.4 9.0 1.3
725 102.7 9.5 14
931 104.3 12.8 19
931 104.3 13.1 1.9
1101 105.4 15.6 2.3
1271 106.5 18.5 2.7
1272 106.4 18.5 2.7
1479 108.0 22.8 3.3
1614 108.8 24.8 3.6
1965 110.7 33.0 4.8
2302 113.0 43.5 6.3
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Table G.15: Pressure drop microchannel 198 x 241 gm, mass flux G' ~ 1024 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k_Pa

kPa psi

81 61.7 10.0 1.5
81 61.7 10.0 1.5
129 68.6 9.8 1.4
185 74.2 9.2 1.3
223 78.1 9.1 1.3
223 78.1 9.1 1.3
251 83.3 9.4 1.4
306 85.2 8.8 1.3
339 89.8 8.8 1.3
373 93.9 8.5 1.2
420 96.7 8.5 1.2
472 99.0 9.1 1.3
602 100.6 10.4 1.5
733 102.4 11.2 1.6
793 103.1 11.8 1.7
994 104.7 14.4 2.1
1200 106.0 18.0 2.6
1471 107.6 23.0 3.3
1823 108.8 26.8 3.9
2157 111.2 35.7 5.2
2488 114.2 48.1 7.0
2197 115.6 53.2 7.7
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Table G.16: Pressure drop microchannel 198 x 241 gm, mass flux G' ~ 1296 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k_Pa
kPa psi

81 61.3 114 1.7
167 67.2 11.0 1.6
256 72.6 11.0 1.6
329 80.5 10.6 1.5
329 80.5 10.6 1.5
420 85.9 10.2 1.5
509 91.7 10.2 1.5
595 98.0 9.8 1.4
647 100.1 10.5 15
705 101.4 12.3 1.8
766 102.6 13.7 2.0
895 104.2 15.6 2.3
1028 105.3 17.5 2.5
1162 106.1 19.0 2.8
1437 107.6 23.4 3.4
1778 109.4 29.6 4.3
2112 112.1 39.6 5.7
2436 115.7 57.0 8.3
2764 119.0 72.8 10.6
2762 119.2 73.4 10.6
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Table G.17: Pressure drop minichannel 378 x 471 ym, mass flux G ~ 730 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k!Da

kPa psi

55 60.8 3.0 0.4
52 61.3 3.1 0.5
49 62.0 2.9 0.4
157 77.9 3.0 0.4
170 75.4 3.2 0.5
163 76.8 3.1 0.5
276 91.3 3.5 0.5
268 93.1 35 0.5
283 90.0 3.5 0.5
324 97.0 3.6 0.5
328 96.2 3.7 0.5
326 96.6 3.6 0.5
421 100.1 3.8 0.5
420 100.3 3.8 0.5
420 100.3 3.7 0.5
525 101.8 4.8 0.7
524 102.0 4.9 0.7
524 102.0 4.9 0.7
634 102.4 5.4 0.8
631 102.9 6.3 0.9
631 102.9 6.6 1.0
771 104.3 8.0 1.2
771 104.3 8.1 1.2
947 106.3 11.1 1.6
947 106.2 11.2 1.6
1123 108.4 14.4 2.1
1124 108.4 14.7 2.1
1301 110.3 19.1 2.8
1299 110.7 20.2 2.9
1475 112.6 24.3 3.5
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Table |G.17t Pressure drop minichannel 378 x 471 ym, mass flux G ~ 730 kg/m?*s (cont)

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k!Da
kPa psi
1474 112.9 24.8 3.6
1649 113.8 27.7 4.0
1655 114.3 28.7 4.2
1833 116.0 32.5 4.7
1832 116.1 32.3 4.7
2012 117.0 37.1 5.4
2009 117.6 36.3 5.3
2011 117.1 37.4 5.4
2181 120.1 41.2 6.0
2354 123.5 50.0 7.3
2516 127.7 60.0 8.7
2683 132.8 74.7 10.8
2834 139.2 91.6 13.3
3001 143.1 102.3 14.8
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Table G.18: Pressure drop minichannel 378 x 471 um, mass flux G ~ 1097 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k!Da

kPa psi

71 55.6 7.8 11
69 55.8 7.9 1.2
204 63.6 8.0 1.2
200 64.2 8.1 1.2
334 71.6 8.3 1.2
331 72.1 8.3 1.2
458 80.4 8.2 1.2
460 80.2 8.3 1.2
604 86.3 8.3 1.2
604 86.3 8.3 1.2
745 92.9 8.2 1.2
741 93.6 7.8 11
890 98.9 8.2 1.2
884 99.8 8.3 1.2
1055 103.0 8.1 1.2
1054 103.1 8.1 1.2
1222 104.3 8.5 1.2
1219 104.7 8.2 1.2
1407 105.7 9.8 1.4
1406 105.9 9.2 1.3
1578 107.3 13.4 1.9
1576 107.5 13.5 2.0
1759 109.1 17.0 2.5
1760 108.9 16.6 2.4
1930 110.2 20.4 3.0
1928 110.4 20.0 2.9
2109 111.5 23.4 3.4
2107 111.8 24.0 3.5
2278 113.0 27.2 3.9
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Table |G.18 Pressure drop minichannel 378 x 471 um, mass flux G ~ 1097 kg/m?s (cont)

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k!:’a
kPa psi
2277 113.3 28.1 4.1
2456 115.0 32.4 4.7
2628 116.6 36.9 53
2634 116.8 37.3 5.4
2801 117.8 41.1 6.0
2797 118.4 41.7 6.0
2976 120.3 47.3 6.9
3146 123.2 55.1 8.0
3305 126.0 63.5 9.2
3479 128.8 71.7 10.4
3638 132.3 81.8 11.9
3813 134.7 87.9 12.7
3982 137.4 94.1 13.6
3984 137.0 92.4 13.4
4126 140.8 103.7 15.0
4128 140.6 99.0 14.4
4312 144.1 113.1 16.4
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Table G.19: Pressure drop minichannel 378 x 471 um, mass flux G ~ 1373 kg/m?s

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, k!Da

kPa psi
100 55.7 10.9 1.6
105 55.0 10.9 1.6
105 55.0 10.9 1.6
219 64.0 10.9 1.6
220 64.0 10.9 1.6
228 63.0 11.2 1.6
354 70.4 10.2 1.5
352 70.7 10.1 15
349 71.0 10.0 15
499 75.5 9.0 1.3
647 80.3 9.0 1.3
760 89.4 9.1 1.3
901 94.9 9.4 1.4
1034 101.5 9.7 1.4
1193 105.2 10.4 15
1377 105.9 11.2 1.6
1551 106.6 11.6 1.7
1733 107.8 12.2 1.8
1904 109.1 16.1 2.3
2082 111.0 19.5 2.8
2254 112.2 23.6 3.4
2430 113.8 28.5 4.1
2594 115.5 32.6 4.7
2764 117.4 35.7 5.2
2956 118.5 40.9 5.9
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Table |G.19t Pressure drop minichannel 378 x 471 um, mass flux G ~ 1373 kg/m?s (cont)

Heat flux, kW/m? | Channel wall temperature, °C Pressure drop, kF’a
kPa psi
2952 118.9 41.4 6.0
3118 121.0 47.3 6.9
3285 122.6 52.3 7.6
3457 124.9 59.4 8.6
3613 127.2 67.9 9.8
3778 129.8 76.6 11.1
3951 132.5 86.5 12.5
4107 136.0 98.1 14.2

G.7 Heat transfer coefficient
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